• Title/Summary/Keyword: Body Segment

Search Result 309, Processing Time 0.025 seconds

Biodynamic Characteristics of Korean Male in Twenties-Mass, Center of Mass and Moment of Inertia Characteristics of Body Segments (한국인 20대 청년 인체분절의 관성특성에 관한 연구)

  • 이영신;임현균;김철중
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1952-1966
    • /
    • 1994
  • The body segment parameters of twelve young male Korean were measured to compare with the results of foreign cadaver studies. A human body was assumed to have fourteen body segments. The mass of each segment was measured with a water immersion test and the mass center of a segment was determined on the balance platform by changing postures. In the case of Korean, because of the difference in body proportion, the mass center of whole-body is located further from the distal end of head(Korean : 44.9% vs. Caucasian : 41.2%), and the mass center of each segment also located in different proportional locations. The existing regression equations, which can estimate segment mass based upon the anthropometric dimensions, estimates segment mass (the mass of shank) for Korean with 13% error. Therefore, it is not recommended to estimate the mass, and the moment of inertia of body segment of Korean based on the existing equations. However, the density information of body constituents was similar enough to apply it to Korean density. It was validated by the comparison between the results of the direct immersion method and 3-dimensional volume reconstruction of segment form the cross sectional images of CT-scan. The average body density measured form twelve subjects was $1.035{\;}kg/m^3$ and showed deceasing trendency.

Generation of Parametric Human Body Segment Models Using Korean Anthropometric Data (한국인의 인체측정 데이터를 이용한 파라메트릭 인체분절모델 생성)

  • Koo, Bon-Yeol;Choi, Myeong-Hwan;Chae, Je-Wook;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.424-436
    • /
    • 2011
  • In this paper, we propose a methodology of generating a parametric segment model for human body using the Korean anthropometric data. The model is defined as an articulated body model consisted with 19 ellipsoid primitives. The primitives are joined at locations representing the physical joints of human body. A lot of previous researches have suggested methodologies of generating body models using the European or American anthropometric data, so that these models were inappropriate for engineering analyses and simulations in case of the Koreans. We defined a set of 35 body dimensions representing our segment model based on the anthropometric data of Koreans. Also we defined four key parameters of age, height, weight and waist circumference, and then we applied regression equations to associate the parameters to the aforementioned dimensions. As the results, we obtained the parametric human body segment models according to the various body types and the subject-specific models for a specific individual. The models in the various industries can be used as the base models for static and dynamic analysis considering the Koreans.

An Ergonomic Study on the Search of Body Surface Area Changed by Movements -In the Lower Trunk and Leg- (동작(動作)에 따른 체표면변화부위(體表面變化部位)의 모색(摸索)에 관한 인간공학적(人間工學的) 연구(硏究) - 하반신(下半身)을 중심(中心)으로 -)

  • Cho, Sung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.4
    • /
    • pp.608-621
    • /
    • 1993
  • The Purposes of this study were 1)to find the body surface total line and segment line significantly(${\alpha}$=0.05) changed by the leg movement including all movement direction of hip joint, knee joint and ankle joint for the more functional clothing. 2)to classify them into 3 types-expansion type, contraction type, expansion & contraction type, and 3)to identify the characteristics of the body surface length changes. 10 Crosswise and 5 lengthwise body surface total lines and 48 crosswise & 39 lengthwise body surface segment lines of 26 female college students aged from 18 to 24 years were measured directly on the body surface and were analyzed by ANOVA & Multiple Comparison Test (Tukey). The results were as following : Body surface total lines significantly changed were all the body surface total lines except abdoman girth, 1/2thigh girth of lower leg and ankle girth, and these were classified into 3 types : Center front leg line belonged to expansion & contraction type, whereas lateral leg line, legscye girth, and total crotch length belonged to contraction type. The rest belonged to expansion type. Knee girth showed maximum expansion, whereas center front leg line showed maximum contraction. Body surface total lines have shown large expansion crosswise whereas lengthwise they have mainly shown contraction. At least more than one component segment line of each body surface total lines except abdoman girth and ankle girth have shown significant change. Top segment of inner leg line showed maximum expansion. whereas just below top segment of center front leg line showed maximum contraction. Crosswise all the body surface segment lines have shown expansion except inner back segments of thigh girth and 1/2thigh girth of upper leg which have shown contraction. Lengthwise they have shown both expansion and contraction according to the location of front or back, and below or upper 1/2thigh girth line except the component segment lines of lateral leg line, which has shown contraction only.(cf. figure 2. figure 3. and table 2-2).

  • PDF

Changes in Body Surface Lines Caused By Lower Limb Movements in Designing Slacks (II) (슬랙스 설계를 위한 하지동작에 따른 체표선 변화 2)

  • Cho Sung-Hee
    • Korean Journal of Human Ecology
    • /
    • v.7 no.3
    • /
    • pp.35-48
    • /
    • 2004
  • In this study, by determining lower limb movements which cause significant changes in body surface lines, body parts with the greatest maximum expansion and contraction rate respectively were illustrated in descending order. Using unmarried female university students aged 18 - 24 as subjects, a total of 32 body surface categories (15 body surface lines and 17 body surface segment lines) were measured in one static and 9 movement poses. In particular, expansion and contraction levels and rates were measured and used in the analysis. The analysis first involved the calculation of the average measurement per body part in body surface line in static pose as well as of the average expansion and contraction levels and rates in 9 lower limb movements. Two-way MANOVA and multiple comparison analysis (Tukey) were conducted on movements and individual somatotypes regarding measurement per body part and expansion and contraction rates. Movements which cause measurements of body surface lines differed significantly in body surface line in static pose versus in movement were then identified. Among average expansion and contraction rates in such movements, maximum average expansion and contraction levels, maximum average expansion and contraction rate, and classes of expansion and contraction rate were determined per body part. The results of this study are as follows. First, 5 lower limb movements; F2, F5, F6, F7, F8, which caused significant changes in body surface lines were determined and illustrated in table 4. Second, the levels, rates, and classes of expansion and contraction rate per body part are illustrated in Tables 5 and 6. Body parts with the greatest maximum expansion rate were, in descending order: upper segment of center back leg line, upper segment of inner leg line, middle segment of center front leg line, posterior crotch length, anterior knee girth, anterior thigh girth, center back leg line, girth at crotch height, anterior midway thigh girth, hip girth, anterior crotch length, knee girth, waist girth, inner leg line, thigh girth, and crotch length. Those with the greatest maximum contraction rate were, in descending order: anterior crotch length, upper segment of center front leg line, lower segment of center back leg line, center front leg line, and posterior thigh girth. The maximum expansion rates and maximum contraction rates, which ranged from 2.05 to $35.95\%$ and from -0.20 to $-30.16\%$ respectively, were classified per body part into 4 ABCD classes. The body part with maximum expansion was the upper segment of the center back leg line at vertical body surface line, expanding by $35.95\%$ or 16.03cm in F5 flexion movement. In contrast, the body part with maximum contraction was the anterior crotch length at vertical body surface line, contracting by $-30.16\%$ or -10.54cm in F5 flexion movement. Both, however, were the body parts to expand or contract the most among all horizontal and vertical body surface lines.

  • PDF

The Coordination and Contribution of Body Segments during Functioning (기능에서 신체분절의 협응과 기여)

  • Chae, Jung-Byung
    • PNF and Movement
    • /
    • v.15 no.1
    • /
    • pp.13-25
    • /
    • 2017
  • Purpose: This study investigated the coordination and contribution of body segments during functioning. Methods: The relevant literature related to body segments and function were reviewed. Results: Efficient control of function is considered with regard to a participant's ability to perform a sequence of movements in body segments, which progresses from the head to the arm, trunk, pelvis, and leg segments. Each segment performs a specific role, which environment explorer using visual information for the head, reaching and grasping for the arms, a stabilizer for the trunk, and the distribution of COM in the pelvis and leg. Conclusion: During any of the movements, the momentum generated by the proximal segments is transferred to the adjacent distal segments in an appropriate sequence. In assessing function for clinical intervention strategies, the segment coordination, segment sequence, transfer of the center of body mass, asymmetrical ratio, muscle activity, and compensatory strategies should be considered.

A Study on the Design Factor for Increasing the Dynamic Fit of Slacks (슬랙스의 동적 적합성 향상을 위한 설계 요인 연구)

  • Cho, Sung-Hee
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.2
    • /
    • pp.162-180
    • /
    • 2008
  • The purpose of this study is to find the basic design factors that affect the changes in body surface lines caused by lower limb movements, thereby resulting in slacks that fit well regardless of whether the human form is static or in motion. Using unmarried female university students aged 18-24 as subjects, a total of 32 body surface lines (15 body surface total lines and 17 body surface segment lines) were measured in one static and 9 movement poses, The analysis first involved the calculation of the expansion and contraction rates per body part in body surface line in 9 lower limb movements, Second, a factor analysis was conducted using the expansion and contraction rates of these changes in body surface line. The results of this study are as follows, According to the factor analysis, basic design factors that affect changes in body surface lines comprised 8 types of factors as illustrated in fig, 2-fig, 9, which explained 79.2% of total variate for the variables studied, Factor 1, comprising the lower segment of center back leg line, center front leg line and inner leg line, and lower limb girth except midway thigh girth and ankle girth below hip girth, accounted for 30.3% of total variance, Factor 2, comprising waist girth, the total and upper segment of center back leg line and center tront leg line, and front and back segment of crotch length, explained 17.4% of total variance, Factor 3, the total and upper segment of lateral leg line at the center, accounted for 56.5% of total variance in accordance with Factors 1, 2, and 3, Factor 4 was the contracting upper part of lower leg between legscye girth and midway thigh girth, Factor 5 comprised the total and upper segment of inner leg line and posterior knee girth, Factor 6 was the total crotch length, Factor 7 was the ankle girth, Factor 8 was the abdomen girth.

Study of the Center of Gravity in the Human Body and each Segment (인체 중심과 분절 중심에 대한 연구)

  • Chung Hyung-Kuk;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.5 no.1
    • /
    • pp.61-69
    • /
    • 1993
  • It was performed to encourage for Physical Therapist to apply the theory of center of the human body and segments in clinical situations. This study was investigated literarily on center of the human body and segments. Methods which search for the center-2 types, that is, method using reaction broad and segmental method-was suggested. The center location difference of gravity in human body depends on individual character. Generally, the center location is in kent of 2nd sacrum, that is, at $55\%$ of height from foot. The center of each segment is on 'link'. In the first place we must how the weight of segment we can search for the center easily. Mean segment coater location of extremities is at $42.33\%$ from each proximal end, and mean center of head and trunk lies at $45\%$.

  • PDF

A Study on Correlation among Length Changes of Body Surface Total lines and Segment Lines -Changed Amount Caused by the Lower Limb Movements- (체표(體表)길이 변화(變化)의 상관성(相關性) 연구(硏究) - 다리(下肢) 동작(動作)에 따른 변화량(變化量)을 중심(中心)으로 -)

  • Cho, Sung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.4
    • /
    • pp.622-637
    • /
    • 1993
  • The Purposes of this study were to investigate the significant correlation among the length changes of body surface total lines and between the length changes of body surface total lines and those of component body surface segment lines, and to reveal anticipated relation among body surface length changes by the lower limb movement including all movement direction of hip joint, knee joint & ankle joint for the more functional clothing making & designing. 10 Crosswise & 5 lengthwise body surface total lines and 48 crosswise & 39 lengthwise body surface segment lines of 26 female college students aged from 18 to 24 years were measured directly on the body surface and analyzed by ANOYA & Multiple Comparison Test(Tukey), and the length changes of them were calculated as the difference of the mean length at Fl movement from the mean length at each movement and were analyzed by PEARSON CORRELATION. The results were as following : 1. Correlation among the length changes of body surface total lines (1) Correlation among the length changes of body surface total lines significantly changed by the movement ; 1) The more GA5 expanded, the more GA6 & GA7 each expanded, and the more GA18 expanded, the more GA1 & GA3 each expanded. 2) The more GA15 expanded, the less GA14 each contracted. 3) The more GA7 expanded, the larger GA17 contracted. 4) The more GA1 & GA18 expanded, the larger GA16 contracted, and the larger GM contracted, the less GA16 contracted. (2) Only GA7 and GA17(at F4) showed high (over r=0.7) correlation coefficient, But others' correlation coefficients were r=0.4~0.7. (3) Correlation coefficients among & between girth items and length items 1) Correlation coefficients among girth items were shown + ; between GA3 and GA4, GA5, GA8, between GA5 and GA6, GA7, GA9 each, between GA1 and GA6 and between GA4 and GA7. 2) Correlation coefficients among length items were shown + or - ; shown + between GA14 and GA15 and between GA17 and GA16 ; but Shown - Between GAlS and GA16. 3) Correlation coefficients between girth items and length items were mainly shown - : shown-between GA1 and GA16, GA17, between, GA4 and GA16, between GA6, GA7 each and GA17, between GA8 and GA18 ; but shown + between GA1, GA3 each and GA18 and between GA8 and GA14 were shown +. 2. Correlation between the length changes of body surface total lines and those of component body surface segment lines. (1) All correlation coefficients were + except A147 of GA14. (2) Correlation coefficient over r=0.7 was shown ; between GA3 and CB3, A35 each, between GA5 and A054, between GA6 and A63, between GA7 and A72, A74 each, between GA8 and A83, A84 each, between GA15 and A153, between GA16 and Al64, Al65 each, between GA18 and A189 : but was not shown between GA4, GA17 and it's component body surface segment lines each. (3) Characteristics of correlation between the length changes of body surface total lines and those of body surface segment lines ; 1) If significant correlation of body surface total lines were expansion parts, it's component body surface segment lines was also expansion segment and the otherwise were the same. But exception was shown between expansion line GA3 and A031 (at F4), between GA18 and AlS9 (at F6) and between GA14 and A147, so to speak GA3 & lines and GA14 was contraction total line oppositely A147 was expansion. 2) The more GA3, GAlS expanded, the less A031, A189 contracted. 3) The more GA14 contracted, the more A147 expanded. 4) All correlation except the above 2), 3), the more total lines (GA1, GA3, GA5, GA15, GA16, GA18) expanded, the more segment lines (A15, CB1, A31, A34, CB3, A52, A54, A153, A169, A181) expanded, or the larger total lines (GA14, GA16, GA17) contracted, the larger segment lines (A141, A142, A161, A164, A165, A172) contracted.

  • PDF