• Title/Summary/Keyword: Bodily tooth movement

Search Result 20, Processing Time 0.017 seconds

Protraction of mandibular molars through a severely atrophic edentulous space in a case of juvenile periodontitis

  • Wu, Jian-chao;Zheng, Yu-ting;Dai, Yi-jun
    • The korean journal of orthodontics
    • /
    • v.50 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • Moving the mandibular posterior teeth into a severely atrophic edentulous space is a challenge. A carefully designed force-and-moment system that results in bodily protraction of the posterior teeth with balanced bone resorption and apposition is needed in such cases. This report describes the treatment of a 19-year-old woman with missing mandibular first molars due to juvenile periodontitis. Miniscrews were used as absolute anchorage during protraction of the mandibular second and third molars. Bodily mesial movement of the mandibular second and third molars was achieved over a distance of 11 to 17 mm after 39 months of orthodontic treatment.

Three dimensional analysis of tooth movement using different types of maxillary molar distalization appliances (간접골성 고정원을 이용한 상악 구치부 원심이동 장치 종류에 따른 치아 이동 양상 평가)

  • Kim, Su-Jin;Chun, Youn-Sic;Jung, Sang-Hyuk;Park, Sun-Hyung
    • The korean journal of orthodontics
    • /
    • v.38 no.6
    • /
    • pp.376-387
    • /
    • 2008
  • Objective: The purpose of this study was to compare the three dimensional changes of tooth movement using four different types of maxillary molar distalization appliances; pendulum appliance (PD), mini-implant supported pendulum appliance (MPD), stainless steel open coil spring (SP) and mini-implant supported stainless steel open coil spring (MSP). Methods: These experiments were performed using the Calorific $machine^{(R)}$ which can simulate dynamic tooth movement. Computed tomography (CT) images of the experimental model were taken before and after tooth movement in 1 mm thicknesses and reconstructed into a three dimensional model using V-works $4.0^{TM}$. These reconstructed images were superimposed using Rapidform $2004^{TM}$ and the direction and amount of tooth movement were measured. Results: The mean reciprocal anchor loss ratio at the first premolar was 17 - 19% for the PD and SP groups. The appliances using mini-implants (MPD or MSP) resulted in less anchorage loss (7 - 8%). On application of a pendulum appliance or MPD, distalization was obtained by tipping rather than by bodily movement. Furthermore, the maxillary second molar tipped distally and bucally. But on application of MSP, distalization was achieved almost by bodily movement. Conclusions: Regarding tooth movement patterns during molar distalization, stainless steel open coil spring with indirect skeletal anchorage was relatively superior to other methods.

Prediction of optimal bending angles of a running loop to achieve bodily protraction of a molar using the finite element method

  • Ryu, Woon-Kuk;Park, Jae Hyun;Tai, Kiyoshi;Kojima, Yukio;Lee, Youngjoo;Chae, Jong-Moon
    • The korean journal of orthodontics
    • /
    • v.48 no.1
    • /
    • pp.3-10
    • /
    • 2018
  • Objective: The purpose of this study was to predict the optimal bending angles of a running loop for bodily protraction of the mandibular first molars and to clarify the mechanics of molar tipping and rotation. Methods: A three-dimensional finite element model was developed for predicting tooth movement, and a mechanical model based on the beam theory was constructed for clarifying force systems. Results: When a running loop without bends was used, the molar tipped mesially by $9.6^{\circ}$ and rotated counterclockwise by $5.4^{\circ}$. These angles were almost similar to those predicted by the beam theory. When the amount of tip-back and toe-in angles were $11.5^{\circ}$ and $9.9^{\circ}$, respectively, bodily movement of the molar was achieved. When the bend angles were increased to $14.2^{\circ}$ and $18.7^{\circ}$, the molar tipped distally by $4.9^{\circ}$ and rotated clockwise by $1.5^{\circ}$. Conclusions: Bodily movement of a mandibular first molar was achieved during protraction by controlling the tip-back and toe-in angles with the use of a running loop. The beam theory was effective for understanding the mechanics of molar tipping and rotation, as well as for predicting the optimal bending angles.

Mode of tooth movement according to the timing of orthodontic force application after extraction (발치 후 교정력 적용 시기에 따른 치아 이동 양상)

  • Han, Sung-Ho;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.30 no.1 s.78
    • /
    • pp.9-17
    • /
    • 2000
  • This study was performed to compare and analyze the mode of tooth movement according to the timing of orthodontic force application alter extraction. The upper right and left third incisors were carefully extracted at three-week interval in lout adult dogs. Both canines were used as an anchorage for the bodily movement of the upper second incisors. Orthodontic forte of 100 gm was simultaneously applied at one week after extraction on one side and four weeks after extraction on the other side using NiTi closed coil spring. While orthodontic force was applied for twelve weeks, the amount of tooth movement was measured at every second week with digital calipers. The animals were sacrificed at twelve weeks and histologic examination was executed to reveal any difference between both sides. The results were obtained as follows. 1. The tooth movement was likely to be faster in lout-week side 4han one-week side for the first two weeks while faster in one-week side during next two weeks 2. The rate of tooth movement was fastest during four to six weeks period, then decreased gradually. 3. The total amount of tooth movement was likely to be larger in one-week side compared to four-week side. 4. Any damage to tooth and periodontal tissue could not be seen in the histologic section of one-week side. These results suggest that earlier application of orthodontic force is better than later after extraction In terms of the rate of tooth movement.

  • PDF

THE STUDIES ON THE ERUPTION PATTERN OF FIRST PERMANENT MOLARS (제1대구치(第一大臼齒)의 맹출양장(萌出樣狀)에 관(關)한 연구(硏究))

  • Shon, Dong-Su
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.3 no.1
    • /
    • pp.7-11
    • /
    • 1976
  • The author measured the degree of development and the eruption pattern of first permanent molars with orthopantomography in 553 Korean children(male; 302, female; 251) from 4 to 9 years old. The orthopantomographs were obtained from dept. of pedodontics, college of dentistry, Seoul National University. The results of the studies were as follows: 1. Upper first permanent molars were erupted with distal inclination of about 30 degrees in the early stage and they gradually moved in the mesial direction by bodily movement of the tooth to be in contact with the disto-proximal surface of primary secondary molars in the late stage. 2. Lower first permanent molars were erupted with mesial inclination in the early stage and moved mesially by tipping movement of the tooth to be in contact with the disto proximal surface of the second primary molars in the late stage. 3. The eruptive forces were considered to be main etiologic factors of space closure after the premature loss of primary molars.

  • PDF

Palatal en-masse retraction of segmented maxillary anterior teeth: A finite element study

  • Park, Jae Hyun;Kook, Yoon-Ah;Kojima, Yukio;Yun, Sunock;Chae, Jong-Moon
    • The korean journal of orthodontics
    • /
    • v.49 no.3
    • /
    • pp.188-193
    • /
    • 2019
  • Objective: The aim of this finite element study was to clarify the mechanics of tooth movement in palatal en-masse retraction of segmented maxillary anterior teeth by using anchor screws and lever arms. Methods: A three-dimensional finite element method was used to simulate overall orthodontic tooth movements. The line of action of the force was varied by changing both the lever arm height and anchor screw position. Results: When the line of action of the force passed through the center of resistance (CR), the anterior teeth showed translation. However, when the line of action was not perpendicular to the long axis of the anterior teeth, the anterior teeth moved bodily with an unexpected intrusion even though the force was transmitted horizontally. To move the anterior teeth bodily without intrusion and extrusion, a downward force passing through the CR was necessary. When the line of action of the force passed apical to the CR, the anterior teeth tipped counterclockwise during retraction, and when the line of action of the force passed coronal to the CR, the anterior teeth tipped clockwise during retraction. Conclusions: The movement pattern of the anterior teeth changed depending on the combination of lever arm height and anchor screw position. However, this pattern may be unpredictable in clinical settings because the movement direction is not always equal to the force direction.

THE LIMITATION OF ALVEOLAR BONE REMODELING DURING RETRACTION OF THE UPPER ANTERIOR TEETH (상악 전치부 견인 시 치아이동에 따른 전방 치조골개조량의 변화에 관한 연구)

  • Hwang, Chung-Ju;Moon, Jeong-Lyon
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.97-105
    • /
    • 2001
  • In many cases of orthodontic treatment the upper anterior teeth are retracted. Periodontal problems may arise during incisor retraction, if the amount of tooth movement and the amount of remodeling in the anterior cortical bone are not the same. Therefore in this study, to find out the relationship between the amount of tooth movement and the amount of bone remodeling during retraction of the upper anterior teeth, lateral cephalograms of 56 female patients over 18-year-old were taken before and after treatment. Among the 56 patients, two groups were divided according to the type of root movement during retraction. 26 patients mainly moved by tipping and 30 by bodily movement. The cephalograms taken before and after treatment were superimposed upon the true horizontal plane. In the Tip-Group, the horizontal bone remodeling/tooth movement ratio was 1:1.63, and in the Torque-Group it was 1:1.66. Because the amount of tooth movement and the amount of bone remodeling were not the same in both groups, in the Tip-Group the root apex moved away from the palatal cortical plate and closer to the labial cortical plate, whereas in the Torque-Group the root moved away from the labial cortical plate and closet to the palatal cortical plate. Therefore, there are limitations in the amount of incisor retraction in patients with a very thin anterior cortical plate in the maxilla, and in patients with severe skeletal discrepancies orthognathic surgery should be considered and when orthodontic camouflage treatment is the only possible method, the orthodontist must be aware of the limitations of treatment.

  • PDF

Analysis of midpalatal miniscrew-assisted maxillary molar distalization patterns with simultaneous use of fixed appliances: A preliminary study

  • Mah, Su-Jung;Kim, Ji-Eun;Ahn, Eun Jin;Nam, Jong-Hyun;Kim, Ji-Young;Kang, Yoon-Goo
    • The korean journal of orthodontics
    • /
    • v.46 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • Skeletal anchorage-assisted upper molar distalization has become one of the standard treatment modalities for the correction of Class II malocclusion. The purpose of this study was to analyze maxillary molar movement patterns according to appliance design, with the simultaneous use of buccal fixed orthodontic appliances. The authors devised two distinct types of midpalatal miniscrew-assisted maxillary molar distalizers, a lingual arch type and a pendulum type. Fourteen patients treated with one of the two types of distalizers were enrolled in the study, and the patterns of tooth movement associated with each type were compared. Pre- and post-treatment lateral cephalograms were analyzed. The lingual arch type was associated with relatively bodily upper molar distalization, while the pendulum type was associated with distal tipping with intrusion of the upper molar. Clinicians should be aware of the expected tooth movement associated with each appliance design. Further well designed studies with larger sample sizes are required.

An Analytical Study on Strain Distribution Using Strain Gauge Attached On Root Surface (치근 부착 스트레인 게이지를 이용한 응력 분포 분석)

  • Kim, Sang-Cheol;Park, Kyu-Chan
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.325-333
    • /
    • 2001
  • Optimal orthodontic treatment could be possible when a orthodontist can predict and control tooth movement by applying a planned force system to the dentition. The moment to force(M/F) ratio at the bracket, has been shown to be a primary determinate of the pattern of tooth movement. As various n/F ratios are applied to the bracket on the tooth crown, strain distribution in periodontium can be changed, and the center of rotation in tooth movement can be determined. It is, therefore, so important in clinicalorthodontics to know the strain distribution in a force system of a M/F ratio. The purpose of this study was to analyze the strain distribution in orthodontic force system by strain gauge attached to tooth root, and to evaluate the usage of the method. For this study, an experimental upper anterior arch model was constructed, where upper central incisors, on the root surface of which, 8 strain gauges were attached, were implanted In the photoelastic resin, as in the case of 4mm midline diastema. Three types of closing of upper midline diastema closure were compared : 1. with elastomeric chain(100g force) in no arch wire, 2. elastomeric chain in .016“ round steel wire, 3. elastomeric chain in .016”x.022“ rectangular steel wire. The results were as follows. 1. Strain distributions on labial, lingual, mesial and distal root surface of tooth were able to be evaluated with the strain gauge method, and the patterns of tooth rotation were understood by presuming the location of moment arm. 2. Extrusion and tipping movement of tooth was seen in closing in no arch wire, and intrusion and bodily movement was seen with steel arch wire inserted.

  • PDF

Biomechanical analysis of distalization of mandibular molars by placing a mini-plate: A finite element study

  • Park, Myungsoon;Na, Yonghyun;Park, Minbong;Ahn, Janghoon
    • The korean journal of orthodontics
    • /
    • v.47 no.5
    • /
    • pp.289-297
    • /
    • 2017
  • Objective: The objective of this study was to analyze the patterns of tooth movements when distalization of mandibular molars using a mini-plate took place. A finite element analysis was applied to analyze patterns of tooth movements. Methods: The model of the mandible and teeth were used to build a finite element analysis model, and a mini-plate was inserted in the mandibular ramus. Two different orthodontic forces were established for displacement of mandibular molars. Orthodontic forces were applied at the level of the bracket and at the level of the cemento-enamel junction in the mandibular canine respectively. Results: Applying orthodontic forces at the level of the cemento-enamel junction resulted in a greater biomechanical bodily movement in distalization of the mandibular molars compared to when the orthodontic forces were applied at the level of the bracket. Applying orthodontic forces to the cemento-enamel junction also resulted in unwanted greater extrusive movements in distalization of the mandibular molars compared to the bracket level. Conclusions: With considering the mode of orthodontic teeth movement, applying different vertical orthodontic forces for distalization of mandibular molars can lead to more effective distalization of teeth.