• Title/Summary/Keyword: BmA3

Search Result 992, Processing Time 0.031 seconds

Design of Next Generation Amplifiers Using Nanowire FETs

  • Hamedi-Hagh, Sotoudeh;Oh, Soo-Seok;Bindal, Ahmet;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.566-570
    • /
    • 2008
  • Vertical nanowire SGFETs(Surrounding Gate Field Effect Transistors) provide full gate control over the channel to eliminate short channel effects. This paper presents design and characterization of a differential pair amplifier using NMOS and PMOS SGFETs with a 10nm channel length and a 2nm channel radius. The amplifier dissipates $5{\mu}W$ power and provides 5THz bandwidth with a voltage gain of 16, a linear output voltage swing of 0.5V, and a distortion better than 3% from a 1.8V power supply and a 20aF capacitive load. The 2nd and 3rd order harmonic distortions of the amplifier are -40dBm and -52dBm, respectively, and the 3rd order intermodulation is -24dBm for a two-tone input signal with 10mV amplitude and 10GHz frequency spacing. All these parameters indicate that vertical nanowire surrounding gate transistors are promising candidates for the next generation high speed analog and VLSI technologies.

A Dual-Band Transmitter RF Front-End for IMT-Advanced system in 0.13-μm CMOS Technology (IMT-Advanced 표준을 지원하는 이중대역 0.13-μm CMOS 송신기 RF Front-End 설계)

  • Shin, Sang-Woon;Seo, Yong-Ho;Kim, Chang-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.273-278
    • /
    • 2011
  • This paper has proposed a dual-band transmitter RF Front-end for IMT-Advanced systems which has been implemented in a 0.13-${\mu}m$ CMOS technology. The proposed dual-band transmitter RF Front-End covers 2300~2700 MHz, 3300~3800 MHz frequency ranges which support 802.11, Mobile WiMAX, and IMT-Advanced system. The proposed dual-band transmitter RF Front-End consumes 45 mA from a 1.2 V supply voltage. The performances of the transmitter RF Front-End are verified through post-layout simulations. The simulation results show a +0 dBm output power at 2 GHz band, and +1.3 dBm output power at 3 GHz band.

A Ku-band 3 Watt PHEMT MMIC Power Amplifier for satellite communication applications (위성 통신 응용을 위한 Ku-대역 3 Watt PHEMT MMIC 전력 증폭기)

  • Uhm, Won-Young;Lim, Byeong-Ok;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1093-1097
    • /
    • 2020
  • This work describes the design and characterization of a Ku-band monolithic microwave integrated circuit (MMIC) power amplifier (PA) for satellite communication applications. The device technology used relies on 0.25 ㎛ gate length gallium arsenide (GaAs) pseudomorphic high electron mobility transistor (PHEMT) of wireless information networking (WIN) semiconductor foundry. The developed Ku-band PHEMT MMIC power amplifier has a small-signal gain of 22.2~23.1 dB and saturated output power of 34.8~35.4 dBm over the entire band of 13.75 to 14.5 GHz. Maximum saturated output power is a 35.4 dBm (3.47 W) at 13.75 GHz. Its power added efficiency (PAE) is 30.6~37.83% and the chip dimensions are 4.4 mm×1.9 mm. The developed 3 W PHEMT MMIC power amplifier is expected to be applied in a variety of Ku-band satellite communication applications.

A 0.13 ㎛ CMOS Dual Mode RF Front-end for Active and Passive Antenna (능·수동 듀얼(Dual) 모드 GPS 안테나를 위한 0.13㎛ CMOS 고주파 프론트-엔드(RF Front-end))

  • Jung, Cheun-Sik;Lee, Seung-Min;Kim, Young-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • The CMOS RF front-end for Global Positioning System(GPS)are implemented in 1P8M CMOS $0.13{\mu}m$ process. The LNAs consist of LNA1 with high gain and low NF, and LNA2 with low gain and high IIP3 for supporting operation with active and passive antenna. the measured performances of both LNAs are 16.4/13.8 dB gain, 1.4/1.68 dB NF, and -8/-4.4 dBm IIP3 with 3.2/2 mA form 1.2 V supply, respectively. The quadrature downconversion mixer is followed by transimpedance amplifier with gain controllability from 27.5 to 41 dB. The front-end performances in LNA1 mode are 39.8 dB conversion gain, 2.2 dB NF, and -33.4 dBm IIP3 with 6.6 mW power consumption.

  • PDF

Synthesis and Photovoltaic Properties of Conducting Polymers Based on Phenothiazine (Phenothiazine계 전도성고분자의 합성 및 유기박막태양전지로의 적용 연구)

  • Yoo, Han-Sol;Park, Yong-Sung
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.93-98
    • /
    • 2013
  • In this paper, four conducting polymers (poly[(N-butyl-phenothiazine)-sulfide] (PBPS), poly[(N-hexyl-phenothiazine)-sulfide] (PHPS), poly[(N-decyl-phenothiazine)-sulfide] (PDPS), and poly[(N-(2-ethylhexyl)-phenothiazine)-sulfide] (PEHPS)) were synthesized with a high temperature and high pressure reaction. The structures of synthesized polymers were confirmed by $^1H-NMR$ and characterized by UV-Vis, cyclic voltammetry, and GPC. From the UV-Vis absorption spectra, the ${\lambda}_{max}$ values of PBPS, PHPS, PDPS, and PEHPS were 338, 341, 340, and 334 nm, respectively and their optical band gaps were 3.11, 3.13, 3.16, and 3.05 eV, respectively. To evaluate the feasible applicability as a photovoltaic cell, the devices composed of for example, ITO/PEDOT : PSS/polymer (PBPS, PDPS) : $PC_{71}BM$ (1 : 3, w/w)/$BaF_2$/Ba/Al were fabricated using the blends of the PBPS and PDPS as a donor, and $PC_{71}BM$ as an acceptor. Then, the power conversion efficiencies (PCE) of devices were estimated as 0.076% of PBPS and 0.136% of PDPS by solar simulator.

Effects of Supplemental Medicinal Plants (Artemisia, Acanthopanax and Garlic) on Productive Performance of Sows and on Growth and Carcass Traits in Finishing Pigs (약용식물(Artemisia, Acanthopanax and Garlic)의 급여가 돼지의 생산성에 미치는 영향)

  • Jang, Hae-Dong;Lee, Je-Hyun;Hong, Seong-Min;Jung, Ji-Hong;Kim, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • This study was conducted to determine the effect of supplemental medicinal plants (Artemisia, Acanthopanx and Garlic) on productive parameters in pigs. In experiment 1, a total of 90 multiparous sows were used in a 21-d performance study. The diets included: 1) CON (basal diet; Control), 2) BM1 (CON + 0.1% medicinal plants) and 3) BM2 (CON + 0.2% medicinal plants). Backfat thickness from farrowing to weaning was higher (P<0.05) in CON compared with sows fed treatments diets. The piglets weight gain was higher in the medicinal plants treatments (P<0.05). ADFI, nutrient digestibility and survivability were not affected by the experimental treatments. In experiment 2, a total of 60 finishing pigs (Landrace ${\times}$ Yorkshire ${\times}$ Duroc, $65.21\;{\pm}\;0.04\;kg$ average initial body weight) were used in a 56-d performance assay to determine the effects of supplemental medicinal plants (Artemisia, Acanthopanx and Garlic) on growth performance and carcass characteristics in finishing pigs. The dietary treatments included: 1) CON (basal diet ; Control), 2) BM1 (CON + 0.1% medicinal plants) and 3) BM2 (CON + 0.2% medicinal plants). For 4~8 weeks and overall period, ADG was higher (P<0.05) in the pigs fed medicinal plants. CON treatment was higher 24 pH loin and cooking loss than BM1 treatment (P<0.05). Water holding capacity and drip loss after 1day were affected by the dietary treatments (P<0.05). No numerical differences were observed in sensory evaluation, meat color, TBARS and loin area among three treatments. In conclusion, the results obtained from this feeding trial suggest that the medicinal plants mixture supplementation in diets for finishing pigs can improve ADG, water holding capacity, cooking loss and it improved backfat loss in sow and, litter weight gain.

Near-Isotropic Tag Antenna in UHF band Using Inductively Coupled Feeding (유도 결합 구조를 응용한 UHF 대역 Near-Isotropic 태그 안테나)

  • Ahn, Jun-Oh;Jang, Hyung-Min;Moon, Hyo-Sang;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1240-1248
    • /
    • 2006
  • This paper presents an UHF band(911 MHz) RFID tag antenna which has near-isotropic radiation pattern and easy conjugate impedance matching characteristics to any commercial chips of usual practice through the application of an inductively-coupled feeding. The proposed antenna of compact size $40{\times}46mm\;(0.12{\times}0.14{\lambda})$ has, at normal incidence, the maximum RCS of $-18.5dBm^2$ and the 3 dB RCS bandwidth of 9 MHz(1 %) in case of short chip load. It has the maximum and minimum RCS' of $-16.9dBm^2\;and\;-21.4dBm^2$ depending on the incident angles. The difference of about 4.5 dB is relatively small compared with that (about 70 dB) of a pure dipole antenna. The designed antenna has been fabricated and its RCS' have been measured varying the angles of incidence. The measured RCS' have been found to have good agreement with the simulated ones.

An Active Tunable Bandpass Filter Design for High Power Application (고출력 특성을 고려한 능동 가변 대역 통과 여파기 설계)

  • Kim, Do-Kwan;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • In this paper, a high power active tunable bandpass filter made of dielectric resonators and varactor diodes is designed using the active capacitance circuit generating negative resistance for tuning cellular TX, RX band. An active capacitance circuit's series feedback circuit using GaAs HFET whose $P_{1dB}$ is 32 dBm is used for compensating the losses from the varactor diodes of the tunable bandpass filter. The tuning elements, the varactor diodes are used as the back-to-back configuration to achieve the high power performance, The designed active capacitance circuit improves the insertion loss characteristics. The designed 2-stage active tunable dielectric bandpass filter at cellular band can cover from 800 MHz to 900 MHz. The insertion losses at 836 MHz and 881.5 MHz with 25 MHz bandwidth are 0.48 dB and 0.39 dB, respectively. The $P_{1dB}$ of the designed bandpass filter at TX and RX band are measured as 19.5 dBm and 23 dBm, respectively.

Anti-Parallel Diode Pair(APDP) Mixer over 3~5 GHz for Ultra Wideband(UWB) Systems (역병렬 다이오드를 이용한 초광대역 시스템용 3~5 GHz 혼합기 설계)

  • Jung Goo-Young;Lee Dong-Hwan;Yun Tae-Yeoul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.7 s.98
    • /
    • pp.681-689
    • /
    • 2005
  • This paper presents an ultra wide band(UWB) mixer using anti-parallel diode pair(APDP) with simulation and measurement results. The proposed mixer adopts the even-harmonic direct conversion mixing, which consists of a couple of filter, in-phase wilkinson power divider, wideband $45^{\circ}$ power divider, and APDP. The m mixer is operating over 3.1 to 4.8 GHz and producing quadrature(I/Q) outputs with a conversion loss of 18 dB and input third order intercept point($IIP_3$) of 15 dBm. I/Q outputs also have difference of about 0.5 dB and phase difference of ${\times}3^{\circ}$ and $P_{1dB}$ of 2 dBm.

Functional expression of TREK1 channel in human bone marrow and human umbilical cord vein-derived mesenchymal stem cells (사람의 골수와 제대정맥에서 유래된 중간엽 줄기세포에서 TREK1 통로의 기능적 발현)

  • Park, Kyoung Sun;Kim, Yangmi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1964-1971
    • /
    • 2015
  • Human bone marrow or human umbilical cord vein derived-mesenchymal stem cells (hBM-MSCs or hUC-MSCs) have known as a potentially useful cell type for clinical therapeutic applications. We investigated two-pore domain potassium (K2P) channels in these cells. K2P channels play a major role in setting the resting membrane potential in many cell types. Among them, TREK1 is targets of hydrogen, hypoxia, polyunsaturated fatty acids, antidepressant, and neurotransmitters. We investigated whether hBM-MSCs and hUC-MSCs express functional TREK1 channel using RT-PCR analysis and patch clamp technique. Potassium channel with a single channel conductance of 100 pS was found in hUC-MSCs and BM-MSCs and the channel was activated by membrane stretch (-5 mmHg ~ -15 mmHg), arachidonic acid ($10{\mu}M$) and intracellular acidosis (pH 6.0). These electrophysiological properties were similar to those of TREK1. Our results suggest that TREK1 is functionally present in hBM-MSCs and hUC-MSCs, where they contribute to its resting membrane potential.