• Title/Summary/Keyword: Blue phosphorescence

Search Result 28, Processing Time 0.016 seconds

Synthesis and Luminescent Characterization of Eu2+/Dy3+-Doped Sr2MgSi2O7 Powders (Eu2+/Dy3+ 이온이 도핑된 Sr2MgSi2O7 분말 합성 및 발광 특성)

  • Park, Jaehan;Kim, Young Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.658-662
    • /
    • 2014
  • $Eu^{2+}/Dy^{3+}$-doped $Sr_2MgSi_2O_7$ powders were synthesized using a solid-state reaction method with flux ($NH_4Cl$). The broad photoluminescence (PL) excitation spectra of $Sr_2MgSi_2O_7:Eu^{2+}$ were assigned to the $4f^7-4f^65d$ transition of the $Eu^{2+}$ ions, showing strong intensities in the range of 375 to 425 nm. A single emission band was observed at 470 nm, which was the result of two overlapping subbands at 468 and 507 nm owing to Eu(I) and Eu(II) sites. The strongest emission intensity of $Sr_2MgSi_2O_7:Eu^{2+}$ was obtained at the Eu concentration of 3 mol%. This concentration quenching mechanism was attributable to dipole-dipole interaction. The $Ba^{2+}$ substitution for $Sr^{2+}$ caused a blue-shift of the emission band; this behavior was discussed by considering the differences in ionic size and covalence between $Ba^{2+}$ and $Sr^{2+}$. The effects of the Eu/Dy ratios on the phosphorescence of $Sr_2MgSi_2O_7:Eu^{2+}/Dy^{3+}$ were investigated by measuring the decay time; the longest afterglow was obtained for $0.01Eu^{2+}/0.03Dy^{3+}$.

Electrical and Optical Properties of Phosphorescent Organic Light-Emitting Devices with a TAPC Host

  • Kim, Tae-Yong;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.84-87
    • /
    • 2011
  • We fabricated phosphorescent organic light-emitting devices with a 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) host layer. Two kinds of devices, one of ITO/TAPC/TAPC:FIrpic/TAZ/LiF/Al (device A) and one of ITO/TAPC:FIrpic/TAPC/TAZ/LiF/Al (device B), were prepared to investigate electrical and optical properties. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic) and 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ) were used as a blue phosphorescent guest material and an electron transport layer, respectively. The TAPC layer in device B strongly contributes to whitish emission, higher driving voltage, and lower current efficiency characteristics compared with device A. The mechanisms of these electrical and optical characteristics of the devices were investigated.

Studies on Eu doping effect on $CaAl_2O_4:\;Eu^{2+}$ phosphor material

  • Bartwal, Kunwar Singh;Ryu, Ho-Jin
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.188-192
    • /
    • 2007
  • High brightness and long persistent luminescence phosphor $CaAl_2O_4:Eu^{2+}$ was prepared with varying $Eu^{2+}$ concentration by solid state reaction technique. Synthesized materials were investigated by powder X-ray diffractometer (XRD), SEM, TEM, photoluminescence excitation and emission spectra. Broad band UV excited luminescence of the $CaAl_2O_4:Eu^{2+}$ was observed in the blue region (${\lambda}_{max}\;=\;440\;nm$) due to transitions from the $4f^65d^1$ to the $4f^7$ configuration of the $Eu^{2+}$ ion. The decay time of the persistence indicated that the persistent luminescence phosphor has bright phosphorescence and maintains a long duration. These materials have great potential for outdoor night time displays.

  • PDF

SiO2/ZnS:Cu/ZnS Triplex Layer Coatings for Phosphorescence Enhancement

  • Zhang, Wen-Tao;Lee, Hong-Ro
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.4
    • /
    • pp.169-173
    • /
    • 2008
  • The objective of this study is to coat the $SiO_2$ layer uniformly on the ZnS:Cu phosphors by using Sol-Gel method. From results of SEM micrographs observation, XRD and XPS analysis, it could be confirmed that $SiO_2$ layer was relatively well coated on ZnS:Cu particles. $Ag_2S$ was used as a decoding chemical to analyze the dense and uniform coating performance of $SiO_2$ layer on phosphor particles. It could be concluded that phosphors synthesized from our two step replacement method showed strong blue peak comparing to other method and rather weak green peak also. Obtained particle size of phosphors were about 20m diameter. Luminescence properties of the phosphors were examined by photoluminescence spectra at the excitation wavelength of 270 nm.

Eu Doping Effect on $CaAl_2O_4:Eu^{2+}$ Phosphor Material

  • Bartwal, Kunwar Singh;Ryu, Ho-Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.65-68
    • /
    • 2007
  • High brightness and long persistent luminescence phosphor $CaAl_2O_4:Eu^{2+}$ was prepared with varying $Eu^{2+}$ concentration by solid state reaction technique. Synthesized materials were investigated by powder X-ray diffractometer (XRD), SEM, TEM, photoluminescence excitation and emission spectra. Broad band UV excited luminescence of the $CaAl_2O_4:Eu^{2+}$ was observed in the blue region (${\lambda}_{max}\;=\;440\;nm$) due to transitions from the $4f^65d^1$ to the $4f^7$ configuration of the $Eu^{2+}$ ion. The decay time of the persistence indicated that the persistent luminescence phosphor has bright phosphorescence and maintains a long duration. These materials have great potential for outdoor night time displays.

  • PDF

Novel Cationic 2-Phenylpyridine-based Iridium(III) Complexes Bearing an Ancillary Phosphine Ligand: Synthesis, Photophysics and Crystal Structure

  • Ma, Ai-Feng;Seo, Hoe-Joo;Jin, Sung-Ho;Yoon, Ung-Chan;Hyun, Myeong-Ho;Kang, Sung-Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2754-2758
    • /
    • 2009
  • Three novel phosphorescent 2-phenylpyridine-based iridium(III) complexes, $[(ppy)_2Ir(P\^{}N)]PF6\;(1),\;[(dfppy)_2Ir(P\^{}N)]PF_6$ (2), and $[(dfmppy)_2 Ir(P\^{}N)]PF6$ (3), where $P\^{}N$ = 2-[(diphenylphosphino)methyl]pyridine (dppmp), were synthesized and characterized. The absorption, photoluminescence, cyclic voltammetry and thermal stability of the complexes were investigated. The complexes showed bright blue luminescences at wavelengths of 448 $\sim$ 500 nm at room temperature in $CHCl_3$ and revealed that the $\pi$-acceptor ability of the phosphorous atom in the ancillary dppmp ligand plays an important role in tuning emission color resulting in a blue-shift emission. The single crystal structure of $[(dfmppy))_2Ir(P\^N)]PF_6$ was determined using X-ray crystallography. The iridium metal center adopts a distorted octahedral structure coordinated to two dfmppy and one dppmp ligand, showing cis C-C and trans N-N chelate dispositions. There is a $\pi-\pi$ overlap between π electrons delocalized in the difluorophenyl rings.

Highly Efficient Phosphorescent White Organic Light-Emitting Devices with a Poly(N-vinylcarbazole) Host Layer

  • Kang, Min-Ki;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.80-83
    • /
    • 2011
  • We have fabricated phosphorescent white organic light-emitting devices (WOLEDs) with a spin-coated poly(Nvinylcarbazole) [PVK] host layer. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic), tris(2-phenylpyridine)iridium(III) [$Ir(ppy)_3$], and tris(2-phenyl-1-quinoline)iridium(III) [$Ir(phq)_3$], were used as the blue, green, and red guest materials, respectively. The PVK was mixed with FIrpic, $Ir(ppy)_3$, and $Ir(phq)_3$ molecules in a chlorobenzene solution and spin-coated in order to prepare the emission layer; 3-(4-biphenylyl)-4-phenyl-5-(4-tertbutylphenyl)-1,2,4-triazole (TAZ) was used as an electron transport material. The resultant device structure was ITO/PVK:FIrpic:$Ir(ppy)_3:Ir(phq)_3$/TAZ/LiF/Al. The electroluminescence, efficiency, and electrical conduction characteristics of the WOLEDs based on the doped PVK host layer were investigated. The maximum current efficiency of the three wavelength WOLED with the doped PVK host was 19.2 cd/A.

Emission Characteristics of White OLEDs with Various Hole Transport Layers (정공수송층에 따른 백색 OLED의 발광 특성)

  • Lim, Byung-Gwan;Seo, Jung-Hyun;Ju, Sung-Hoo;Paek, Kyeong-Kap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.983-987
    • /
    • 2010
  • In order to investigate the emission characteristics of the phosphorescent white organic light-emitting diodes (PHWOLEDs) according to various hole transport layers (HTLs), PHWOLEDs composed of HTLs whose structure are NPB/TCTA, NPB/mCP and NPB/TCTA/mCP, two emissive layers (EMLs) which emit two-wavelengths of light (blue and red), and electron transport layer were fabricated. The applied voltage, power efficiency, and external quantum efficiency at a current density of $1 mA/cm^2$ for the fabricated PHWOLEDs were 7.5 V, 11.5 lm/W, and 15%, in case of NPB/mCP, 5 V, 14.8 lm/W, and 13.7%, in case of NPB/TCTA, and 5.5 V, 14.6 lm/W, and 15%, in case of NPB/TCTA/mCP in the hole transport layer, respectively. High emission efficiency can be obtained when the amount of hole injection from anode is balanced out by the amount of electron injection from the cathode to EML by using NPB/TCTA/mCP structured HTL.