• 제목/요약/키워드: Blue organic light-emitting diodes

검색결과 141건 처리시간 0.032초

High efficiency deep blue and pure white phosphorescent organic light emitting diodes

  • Yook, Kyoung-Soo;Jeon, Soon-Ok;Joo, Chul-Woong;Kim, Myung-Seop;Choi, Hong-Seok;Lee, Seok-Jong;Han, Chang-Wook;Tak, Yoon-Heung;Lee, Nam-Yang;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.486-488
    • /
    • 2009
  • High efficiency deep blue and pure white phosphorescent organic light emitting diodes were developed using a new deep blue phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine) iridium (FCNIr). A high quantum efficiency of 9.1 % with a color coordinate of (0.15, 0.16) at 1,000 cd/$m^2$ was obtained in the deep blue device and a high quantum efficiency of 15.2 % with a color coordinate (0.30, 0.32) was obtained in the pure white organic light-emitting diodes. The quantum efficiency of the pure white device is the best quantum efficiency value reported in the pure white device up to now.

  • PDF

Highly efficient white organic light-emitting diodes using hybrid-spacer or/and codoped blue emitting layers

  • Seo, Ji-Hoon;Kim, Gu-Young;Hyung, Gun-Woo;Lee, Kum-Hee;Kim, You-Hyun;Kim, Woo-Young;Yoon, Seung-Soo;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1219-1221
    • /
    • 2008
  • The Authors have demonstrated highly efficient white organic light-emitting diodes using hybrid-spacer which was inserted between each emitting layer or/and codoped blue emitting layers with the different functional material. The characteristics of WOLEDs showed the maximum external quantum efficiency of 13.8%, power efficiency of 33.66 lm/W, and Commission Internationale de I'Eclairage coordinates of (x=0.36, y=0.37), respectively.

  • PDF

Interlayer Engineering with Different Host Material Properties in Blue Phosphorescent Organic Light-Emitting Diodes

  • Lee, Jong-Hee;Lee, Jeong-Ik;Lee, Joo-Won;Chu, Hye-Yong
    • ETRI Journal
    • /
    • 제33권1호
    • /
    • pp.32-38
    • /
    • 2011
  • We investigated the light-emitting performances of blue phosphorescent organic light-emitting diodes, known as PHOLEDs, by incorporating an N,N'-dicarbazolyl-3,5-benzen interlayer between the hole transporting layer and emitting layer (EML). We found that the effects of the introduced interlayer for triplet exciton confinement and hole/electron balance in the EML were exceptionally dependent on the host materials: 9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole, 9-(4-tert-butylphenyl)-3,6-ditrityl-9H-carbazole, and 4,4'-bis-triphenylsilanyl-biphenyl. When an appropriate interlayer and host material were combined, the peak external quantum efficiency was greatly enhanced by over 21 times from 0.79% to 17.1%. Studies on the recombination zone using a series of host materials were also conducted.

Investigation of degradation mechanism of phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes through doping concentration dependence of lifetime

  • Song, Wook;Kim, Taekyung;Lee, Jun Yeob;Lee, Yoonkyoo;Jeong, Hyein
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.350-354
    • /
    • 2018
  • Lifetime study of blue phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was carried out to understand the dominant degradation process during electrical operation of the devices. Doping concentration dependence of the phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was studied, which demonstrated long lifetime at low doping concentration in the phosphorescent devices and at high doping concentration in the thermally activated delayed fluorescent devices. Detailed mechanism study of the two devices described that triplet-triplet annihilation is the main degradation process of phosphorescent organic light-emitting diodes, whereas triplet-polaron annihilation is the key degradation factor of the thermally activated delayed fluorescent devices.

Simplified Bilayer White Phosphorescent Organic Light-Emitting Diodes

  • Lee, Jonghee;Sung, Woo Jin;Joo, Chul Woong;Cho, Hyunsu;Cho, Namsung;Lee, Ga-Won;Hwang, Do-Hoon;Lee, Jeong-Ik
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.260-264
    • /
    • 2016
  • We report on highly efficient blue, orange, and white phosphorescent organic light-emitting diodes consisting only two organic layers. Hole transporting 4, 4,' 4"-tris (N-carbazolyl)triphenylamine (TcTa) and electron transporting 2-(diphenylphosphoryl) spirofluorene (SPPO1) are used as an emitting host for orange light-emitting bis(3-benzothiazol-2-yl-9-ethyl-9H-carbazolato) (acetoacetonate) iridium ((btc)2(acac)Ir) and blue light-emitting iridium(III)bis(4,6-difluorophenyl-pyridinato-N,C2') picolinate (FIrpic) dopant, respectively. Combining these two orange and blue light-emitting layers, we successfully demonstrate highly efficient white PHOLEDs while maintaining Commission internationale de l'eclairage coordinates of (x = 0.373, y = 0.443). Accordingly, we achieve a maximum external quantum, current, and power efficiencies of 12.9%, 30.3 cd/A, and 30.0 lm/W without out-coupling enhancement.

유기발광 다이오드(OLED) 및 이를 위한 청색형광체 (Recent Research Highlights in Blue Fluorescent Emitters in Organic Light-Emitting Diodes)

  • 박영일;김진철;서봉국;조득희
    • 공업화학
    • /
    • 제25권3호
    • /
    • pp.233-236
    • /
    • 2014
  • 유기발광 다이오드(Organic light emitting diodes)는 차세대 평판디스플레이로 학문적으로나 산업적으로 많은 관심을 받고 있다. 그러나 고성능 유기발광 다이오드의 생산을 위해서는 극복해야 할 많은 과제들이 여전히 남아있다. 그중 청색발광물질은 자체의 넓은 밴드갭으로 인해 녹색과 적색 발광재료에 비해 낮은 효율을 보이고 있다. 그러므로 많은 사람들이 높은 효율을 가진 청색 발광물질을 개발하기 위해 많은 노력을 기울이고 있다. 따라서 본 논문에서는 유기발광 다이오드의 기본개념과 청색 발광물질의 개발에 대해 간략하게 소개하였다.

High efficiency deep blue phosphorescent organic light emitting diodes using a phenylcarbazole type phosphine oxide as a host material

  • Jeon, Soon-Ok;Yook, Kyoung-Soo;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.188-191
    • /
    • 2009
  • A high efficiency deep blue phosphorescent organic light-emitting diode (PHOLED) was developed using a new wide triplet bandgap host material (PPO1) with a phenylcarbazole and a phosphine oxide unit. The wide triplet bandgap host material was synthesized by a phosphornation reaction of 2-bromo-Nphenylcarbazole with chlorodiphenylphosphine. A deep blue emitting phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine)iridium (FCNIr), was doped into the PPO1 host and a high quantum efficiency of 17.1 % and a current efficiency of 19.5 cd/A with a color coordinate of (0.14,0.15) were achieved in the blue PHOLED. The quantum efficiency of the deep blue PHOLED was better than any other quantum efficiency value reported up to now.

  • PDF

Efficient Deep-Blue Organic Light-emitting Diodes with Double-Emission Layers

  • Seo, Ji-Hoon;Park, Jung-Sun;Seo, Bo-Min;Lee, Kum-Hee;Park, Jung-Keun;Yoon, Seung-Soo;Kim, Young-Kwan
    • Journal of Information Display
    • /
    • 제10권3호
    • /
    • pp.107-110
    • /
    • 2009
  • Efficient deep-blue organic light-emitting diodes were demonstrated using 4,4'-bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl doped in double-emission layers (D-EMLs). The D-EML system, which consists of 2-methyl-9,10-di(2-naphthyl)anthracene and 1,4-(dinaphthalen-2-yl)-naphthalene as blue hosts, was employed to broaden the recombination zone and to ensure the good confinement of the holes and electrons. The optimized device showed a peak current efficiency of 4.47 cd/A, a peak external quantum efficiency of 4.09%, and Commission Internationale de L'Eclairage coordinates of (0.16, 0.10).

Dependence of Light-Emitting Characteristics of Blue Phosphorescent Organic Light-Emitting Diodes on Electron Injection and Transport Materials

  • Lee, Jeong-Ik;Lee, Jonghee;Lee, Joo-Won;Cho, Doo-Hee;Shin, Jin-Wook;Han, Jun-Han;Chu, Hye Yong
    • ETRI Journal
    • /
    • 제34권5호
    • /
    • pp.690-695
    • /
    • 2012
  • We investigate the light-emitting performances of blue phosphorescent organic light-emitting diodes (PHOLEDs) with three different electron injection and transport materials, that is, bathocuproine(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) (Bphen), 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (Tm3PyPB), and 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy), which are partially doped with cesium metal. We find that the device characteristics are very dependent on the nature of the introduced electron injection layer (EIL) and electron transporting layer (ETL). When the appropriate EIL and ETL are combined, the peak external quantum efficiency and peak power efficiency improve up to 20.7% and 45.6 lm/W, respectively. Moreover, this blue PHOLED even maintains high external quantum efficiency of 19.6% and 16.9% at a luminance of $1,000cd/m^2$ and $10,000cd/m^2$, respectively.

적색과 청색 인광 소재를 이용한 백색 유기 발광 소자에 관한 연구 (White Organic Light-emitting Diodes using red and blue phosphorescent materials)

  • 박정현;최학범;김구영;이석재;서지현;서지훈;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.64-65
    • /
    • 2007
  • High-efficiency white organic light-emitting diodes (WOLEDs) were fabricated with two emissive layers and exciton blocking layer was sandwiched between two phosphorescent dyes which were, bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (Flrpic) as blue emission and a newly synthesized red phosphorescent material guest, Bis(5-benzoyl-2-phenylpyridinato-C,N)iridium(III) (acetylacetonate) ((Bzppy)2Ir(III)acac). This exciton blocking layer prevents a triple-triple energy transfer between the two phosphorescent emissive layers with balanced emission of blue and red. The white device showed the Commission Internationale d'Eclairage (CIEx,y) coordinates of (0.34, 0.40) at the maximum luminance of $24100\;cd/m^2$ and maximum luminous efficiency of 22.4 cd/A, respectively.

  • PDF