DOI QR코드

DOI QR Code

Investigation of degradation mechanism of phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes through doping concentration dependence of lifetime

  • Song, Wook (School of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Taekyung (Display Research Center, Samsung Display Co.) ;
  • Lee, Jun Yeob (School of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Yoonkyoo (Display Research Center, Samsung Display Co.) ;
  • Jeong, Hyein (Display Research Center, Samsung Display Co.)
  • Received : 2018.06.27
  • Accepted : 2018.08.14
  • Published : 2018.12.25

Abstract

Lifetime study of blue phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was carried out to understand the dominant degradation process during electrical operation of the devices. Doping concentration dependence of the phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was studied, which demonstrated long lifetime at low doping concentration in the phosphorescent devices and at high doping concentration in the thermally activated delayed fluorescent devices. Detailed mechanism study of the two devices described that triplet-triplet annihilation is the main degradation process of phosphorescent organic light-emitting diodes, whereas triplet-polaron annihilation is the key degradation factor of the thermally activated delayed fluorescent devices.

Keywords

References

  1. S.W. Wen, M.T. Lee, C.H. Chen, J. Disp. Technol. 1 (2005) 90. https://doi.org/10.1109/JDT.2005.852802
  2. S.J. Yeh, M.F. Wu, C.T. Chen, Y.H. Song, Y. Chi, M.H. Ho, S.F. Hsu, C.H. Chen, Adv. Mater. 17 (2005) 285. https://doi.org/10.1002/adma.200401373
  3. W. Song, J.Y. Lee, Adv. Opt. Mater. 5 (2017) 12.
  4. V. Sivasubramaniam, F. Brodkorb, S. Hanning, H.P. Loebl, V. van Elsbergen, H. Boerner, U. Scherf, M. Kreyenschmidt, J. Fluorine Chem. 130 (2009) 640. https://doi.org/10.1016/j.jfluchem.2009.04.009
  5. K. Udagawa, H. Sasabe, C. Cai, J. Kido, Adv. Mater. 26 (2014) 5062. https://doi.org/10.1002/adma.201401621
  6. S. Scholz, D. Kondakov, B. Luessem, K. Leo, Chem. Rev. 115 (2015) 8449. https://doi.org/10.1021/cr400704v
  7. D.Y. Kondakov, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. (2015) 373.
  8. B. Kim, Y. Park, J. Lee, J.H. Lee, J. Park, H.L. Wang, J. Mater. Chem. C (2014) 248.
  9. Q.S. Zhang, B. Li, S.P. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photon. 8 (2014) 326. https://doi.org/10.1038/nphoton.2014.12
  10. J.A. Seo, M.S. Gong, W. Song, J.Y. Lee, Chem. Asian J. 11 (2016) 868. https://doi.org/10.1002/asia.201501365
  11. H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nat. Commun. 5 (2014).
  12. W. Song, T. Kim, Y. Lee, J.Y. Lee, J. Mater. Chem. C 5 (2017) 3948.
  13. M.A. Baldo, C. Adachi, S.R. Forrest, Phys. Rev. B 62 (2000) 10967. https://doi.org/10.1103/PhysRevB.62.10967
  14. N.C. Giebink, B.W. D'Andrade, M.S. Weaver, P.B. Mackenzie, J.J. Brown, M.E. Thompson, S.R. Forrest, J. Appl. Phys. (2008) 103.
  15. Y.F. Zhang, J. Lee, S.R. Forrest, Nat. Commun. 5 (2014) 1.
  16. J. Lee, H.F. Chen, T. Batagoda, C. Coburn, P.I. Djurovich, M.E. Thompson, S.R. Forrest, Nat. Mater. 15 (2016) 92. https://doi.org/10.1038/nmat4446
  17. J.A. Seo, S.K. Jeon, J.Y. Lee, Org. Electron. 34 (2016) 33. https://doi.org/10.1016/j.orgel.2016.03.038
  18. Y.J. Kang, J.Y. Lee, Org. Electron. 32 (2016) 109. https://doi.org/10.1016/j.orgel.2016.02.025
  19. Y.J. Cho, S.K. Jeon, J.Y. Lee, Adv. Opt. Mater. 4 (2016) 688. https://doi.org/10.1002/adom.201500634
  20. J.M. Choi, W. Lee, K.K. Kim, J.Y. Lee, Org. Electron. 45 (2017) 104. https://doi.org/10.1016/j.orgel.2017.03.003
  21. W. Song, J.Y. Lee, Adv. Opt. Mater. 5 (2017).
  22. W. Song, W. Lee, K.K. Kim, J.Y. Lee, Org. Electron. 37 (2016) 252. https://doi.org/10.1016/j.orgel.2016.07.002

Cited by

  1. Effects of Charge Transport Materials on Blue Fluorescent Organic Light-Emitting Diodes with a Host-Dopant System vol.10, pp.5, 2018, https://doi.org/10.3390/mi10050344
  2. Precise Exciton Management of Quaternary Emission Layers for Highly Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence vol.12, pp.45, 2018, https://doi.org/10.1021/acsami.0c15208
  3. Understanding degradation of organic light-emitting diodes from magnetic field effects vol.1, pp.1, 2018, https://doi.org/10.1038/s43246-020-0019-0
  4. Lifetime assessment of organic light emitting diodes by compact model incorporated with deep learning technique vol.101, pp.None, 2022, https://doi.org/10.1016/j.orgel.2021.106404