• Title/Summary/Keyword: Blow-up

검색결과 157건 처리시간 0.023초

A PARABOLIC SYSTEM WITH NONLOCAL BOUNDARY CONDITIONS AND NONLOCAL SOURCES

  • Gao, Wenjie;Han, Yuzhu
    • 대한수학회논문집
    • /
    • 제27권3호
    • /
    • pp.629-644
    • /
    • 2012
  • In this work, the authors study the blow-up properties of solutions to a parabolic system with nonlocal boundary conditions and nonlocal sources. Conditions for the existence of global or blow-up solutions are given. Global blow-up property and precise blow-up rate estimates are also obtained.

SOME TYPES OF REACTION-DIFFUSION SYSTEMS WITH NONLOCAL BOUNDARY CONDITIONS

  • Han, Yuzhu;Gao, Wenjie
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.1765-1780
    • /
    • 2013
  • This paper deals with some types of semilinear parabolic systems with localized or nonlocal sources and nonlocal boundary conditions. The authors first derive some global existence and blow-up criteria. And then, for blow-up solutions, they study the global blow-up property as well as the precise blow-up rate estimates, which has been seldom studied until now.

EXISTENCE OF SOLUTIONS FOR BOUNDARY BLOW-UP QUASILINEAR ELLIPTIC SYSTEMS

  • Miao, Qing;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.625-637
    • /
    • 2010
  • In this paper, we are concerned with the quasilinear elliptic systems with boundary blow-up conditions in a smooth bounded domain. Using the method of lower and upper solutions, we prove the sufficient conditions for the existence of the positive solution. Our main results are new and extend the results in [Mingxin Wang, Lei Wei, Existence and boundary blow-up rates of solutions for boundary blow-up elliptic systems, Nonlinear Analysis(In Press)].

NEW BLOW-UP CRITERIA FOR A NONLOCAL REACTION-DIFFUSION SYSTEM

  • Kim, Eun-Seok
    • 호남수학학술지
    • /
    • 제43권4호
    • /
    • pp.667-678
    • /
    • 2021
  • Blow-up phenomena for a nonlocal reaction-diffusion system with time-dependent coefficients are investigated under null Dirichlet boundary conditions. Using Kaplan's method with the comparison principle, we establish new blow-up criteria and obtain the upper bounds for the blow-up time of the solution under suitable measure sense in the whole-dimensional space.

BLOW-UP TIME AND BLOW-UP RATE FOR PSEUDO-PARABOLIC EQUATIONS WITH WEIGHTED SOURCE

  • Di, Huafei;Shang, Yadong
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1143-1158
    • /
    • 2020
  • In this paper, we are concerned with the blow-up phenomena for a class of pseudo-parabolic equations with weighted source ut - △u - △ut = a(x)f(u) subject to Dirichlet (or Neumann) boundary conditions in any smooth bounded domain Ω ⊂ ℝn (n ≥ 1). Firstly, we obtain the upper and lower bounds for blow-up time of solutions to these problems. Moreover, we also give the estimates of blow-up rate of solutions under some suitable conditions. Finally, three models are presented to illustrate our main results. In some special cases, we can even get some exact values of blow-up time and blow-up rate.

TWO NEW BLOW-UP CONDITIONS FOR A PSEUDO-PARABOLIC EQUATION WITH LOGARITHMIC NONLINEARITY

  • Ding, Hang;Zhou, Jun
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1285-1296
    • /
    • 2019
  • This paper deals with the blow-up phenomenon of solutions to a pseudo-parabolic equation with logarithmic nonlinearity, which was studied extensively in recent years. The previous result depends on the mountain-pass level d (see (1.6) for its definition). In this paper, we obtain two blow-up conditions which do not depend on d. Moreover, the upper bound of the blow-up time is obtained.

GLOBAL EXISTENCE AND BLOW-UP FOR A DEGENERATE REACTION-DIFFUSION SYSTEM WITH NONLINEAR LOCALIZED SOURCES AND NONLOCAL BOUNDARY CONDITIONS

  • LIANG, FEI
    • 대한수학회지
    • /
    • 제53권1호
    • /
    • pp.27-43
    • /
    • 2016
  • This paper deals with a degenerate parabolic system with coupled nonlinear localized sources subject to weighted nonlocal Dirichlet boundary conditions. We obtain the conditions for global and blow-up solutions. It is interesting to observe that the weight functions for the nonlocal Dirichlet boundary conditions play substantial roles in determining not only whether the solutions are global or blow-up, but also whether the blowing up occurs for any positive initial data or just for large ones. Moreover, we establish the precise blow-up rate.

BLOW-UP RATE FOR THE SEMI-LINEAR WAVE EQUATION IN BOUNDED DOMAIN

  • Liang, Chuangchuang;Wang, Pengchao
    • 대한수학회보
    • /
    • 제52권1호
    • /
    • pp.173-182
    • /
    • 2015
  • In this paper, the blow-up rate of $L^2$-norm for the semi-linear wave equation with a power nonlinearity is obtained in the bounded domain for any p > 1. We also get the blow-up rate of the derivative under the condition 1 < p < $1+\frac{4}{N-1}$ for $N{\geq}2$ or 1 < p < 5 for N = 1.

BLOW UP OF SOLUTIONS TO A SEMILINEAR PARABOLIC SYSTEM WITH NONLOCAL SOURCE AND NONLOCAL BOUNDARY

  • Peng, Congming;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1435-1446
    • /
    • 2009
  • In this paper we investigate the blow up properties of the positive solutions to a semi linear parabolic system with coupled nonlocal sources $u_t={\Delta}u+k_1{\int}_{\Omega}u^{\alpha}(y,t)v^p(y,t)dy,\;v_t={\Delta}_v+k_2{\int}_{\Omega}u^q(y,t)v^{\beta}(y,t)dy$ with non local Dirichlet boundary conditions. We establish the conditions for global and non-global solutions respectively and obtain its blow up set.

  • PDF

CRITERION FOR BLOW-UP IN THE EULER EQUATIONS VIA CERTAIN PHYSICAL QUANTITIES

  • Kim, Namkwon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제16권4호
    • /
    • pp.243-248
    • /
    • 2012
  • We consider the (possible) finite time blow-up of the smooth solutions of the 3D incompressible Euler equations in a smooth domain or in $R^3$. We derive blow-up criteria in terms of $L^{\infty}$ of the partial component of Hessian of the pressure together with partial component of the vorticity.