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NEW BLOW-UP CRITERIA FOR A NONLOCAL

REACTION-DIFFUSION SYSTEM

Eun-Seok Kim

Abstract. Blow-up phenomena for a nonlocal reaction-diffusion system
with time-dependent coefficients are investigated under null Dirichlet

boundary conditions. Using Kaplan’s method with the comparison prin-

ciple, we establish new blow-up criteria and obtain the upper bounds
for the blow-up time of the solution under suitable measure sense in the

whole-dimensional space.

1. Introduction

We study a nonlocal reaction-diffusion system with time-dependent coeffi-
cients {

ut = ∆u+ k1(t)u
p
∫
Ω
vqdx, (x, t) ∈ Ω× (0, t∗),

vt = ∆v + k2(t)v
r
∫
Ω
usdx, (x, t) ∈ Ω× (0, t∗),

(1.1)

subject to null Dirchlet boundary and initial conditions{
u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0, t∗) ,
u (x, 0) = u0 (x) , v (x, 0) = v0 (x) , x ∈ Ω,

(1.2)

where Ω ⊂ RN (N ≥ 1) is a bounded region with smooth boundary ∂Ω, k1 (t) , k2 (t)
are bounded positive C1-functions, p, r ≥ 0, q, s > 0, t∗ is a possible blow-up
time when blow-up occurs, otherwise t∗ = +∞. The nonnegative initial data
u0 (x) , v0 (x) are C

1-functions which satisfy compatibility conditions. Then the
existence and uniqueness of nonnegative local classical solution to (1.1)-(1.2)
are well known ([1,2] and [3, Chapter 14]). More precise conditions for other
data will be given later.

Our nonlocal reaction system (1.1) serves as a typical model in chemical
reactions, population dynamics and heat transfer, where u and v represent
the thickness of two kinds of chemical reactants, the densities of two biological
populations during a migration and the temperatures of two different materials
during a propagation respectively [4].
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During the past decades, there have been many works to deal with the
blow-up phenomena for the solutions of local or nonlocal reaction-diffusion
equations (systems), we refer the reader to the monograph [3-5] as well as to
the survey paper [2] and the references therein. Roughly, it has been seen
that existence of global and nonglobal solutions and behavior of the solutions
to reaction-diffusion equations (systems) depend on dimension, nonlinearity,
initial data and boundary condition. In particular, Quittner and Souplet [5,
Chapter 5] introduced the qualitative properties of the solution to a nonlocal
reaction-diffusion equation with Dirichlet boundary in detail. In a sense, the
nonlocal models are more close to the practical problems than the local models,
and now many local theories are no longer holding. Therefore, they are more
difficult and challenging. In this paper, we would like to investigate the blow-up
phenomena of the solution for a nonlocal reaction system, and our main aim is
to establish a new blow-up criteria. As we all know, there are only a few works
about the blow-up criteria to the reaction systems.

In [6], Xu and Ye investigated the following weakly coupled local reaction-
diffusion problem for large initial data and suitable parameters{

ut = ∆u+ upvq, (x, t) ∈ Ω× (0, t∗) ,
vt = ∆v + vrus, (x, t) ∈ Ω× (0, t∗) ,

they derived the exact value of the blow-up time under null Dirichlet boundary
conditions. Payne and Philippin [7] considered the semilinear parabolic system
with time-dependent coefficients as follows{

ut = ∆u+ k1 (t) f1 (v) , (x, t) ∈ Ω× (0, t∗) ,
vt = ∆v + k2 (t) f2 (u) , (x, t) ∈ Ω× (0, t∗) ,

under null Dirichlet boundary conditions, they obtained sufficient conditions
for the solution blows up in finite time therefore derived the upper bounds
for the blow-up time. Tao and Fang [8] investigated the weakly coupled local
reaction-diffusion system with time-dependent coefficients as follows{

ut = ∆u+ k1(t)u
pvq, (x, t) ∈ Ω× (0, t∗) ,

vt = ∆v + k2(t)v
rus, (x, t) ∈ Ω× (0, t∗) ,

under null Dirichlet boundary conditions, they obtained the blow-up criteria
and lower bounds for the blow-up time of the solution under two different
measures in high-dimensional space (N ≥ 3). Recently, there have been new
developments in the study of nonlocal reaction systems. In [9], the authors
considered our problem (1.1)-(1.2) for k1(t) = k2(t) = 1 and obtained the
lower bound for the blow-up time using differential inequality technique in
high-dimensional space (N ≥ 3). At the same time, they derived the upper
bounds for the blow-up time in the norm of L2 and L∞.

Inspired by [8] and [9], we will combine Kaplan’s method with the com-
parison principle to seek the sufficient conditions to guarantee the solution of
problem (1.1)-(1.2) exists globally or blows up in finite time, and then derive
the upper bounds for the blow-up time in whole-dimensional space (N ≥ 1).
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2. Main result

We consider the fixed membrane problem

∆φ+ λφ = 0, x ∈ Ω,

φ(x) = 0, x ∈ ∂Ω,

where λ1, φ1 and µ1, ψ1 are the first eigenvalue and the corresponding eigen-
functions for region Ω and Ωε := {x ∈ Ω|dist (x, ∂Ω) ≥ ε} respectively.

Theorem 2.1. Suppose that k1(t), k2(t) are bounded functions and let

K := min {k1 (t) , k2 (t)} , K̄ := max {k1 (t) , k2 (t)} ,

and (u, v) is the nonnegative classical solution of problem (1.1)-(1.2).
(I) For max{p + q, r + s} ≤ 1, if the initial data are small enough and satisfy
(2.6), then the solution of problem (1.1)-(1.2) exists globally.
(II) For min {p, r} > 1, if the initial data are small enough and satisfy (2.9),
then the solution of problem (1.1)-(1.2) exists globally; Meanwhile,
(i) For p > 1, 0 < q ≤ 1, if the initial data are large enough and satisfy (2.16),
then the solution of problem (1.1)-(1.2) blows up in finite time t∗ with the
following upper bound

1

(1− p) (µ1 − k1)
ln

[
1− (µ1 − k1)U1

1−p (0)

K

]
,

where k1 = − λ1

p−1 , U1 (t) =
∫
Ωε
ω1ψ1dx, and ω1 is defined in (2.12);

(ii) For p > 1, q > 1, if the initial data are large enough and satisfy (2.22), then
the solution of problem (1.1)-(1.2) blows up in finite time t∗ with the following
upper bound

1

(1− p) (µ1 − k2)
ln

[
1− (µ1 − k2)U2

1−p (0)

K|Ω|1−q

]
,

where k2 = − λ1

p−1q, U2 (t) =
∫
Ωε
ω2ψ1dx, and ω2 is defined in (2.18);

(iii) For r > 1, 0 < s ≤ 1, if the initial data are large enough, then the solution
of problem (1.1)-(1.2) blows up in finite time t∗ with the following upper bound

1

(1− r) (µ1 − k3)
ln

[
1− (µ1 − k3)V1

1−r (0)

K

]
,

where k3 = − λ1

r−1 , V1 (t) =
∫
Ωε
ω3ψ1dx, ω3 = ek3tv;

(iv) For r > 1, s > 1, if the initial data are large enough, then the solution of
problem (1.1)-(1.2) blows up in finite time t∗ with the following upper bound

1

(1− r) (µ1 − k4)
ln

[
1− (µ1 − k4)V2

1−r (0)

K|Ω|1−s

]
,

where k4 = − λ1

r−1s, V2 (t) =
∫
Ωε
ω4ψ1dx, ω4 = ek4tv.



670 Eun-Seok Kim

(v) For max {p, r} ≤ 1, if qs ≤ (1− p) (1− r) and the initial data are small
enough and satisfy (2.27), then the solution to problem (1.1)-(1.2) exists glob-
ally; while qs > (1− p) (1− r) and the initial data are large enough and satisfy
(2.31), then the solution to problem (1.1)-(1.2) blows up in finite time t∗, and
an upper bound for t∗ is

1

τ
,

where positive constant τ satisfies (2.30).

Proof. We will prove the theorem in three cases.

Case 1. max{p+ q, r + s} ≤ 1.

Let (ū, v̄) be the solution to the following problem


ūt = ∆ū+ K̄ūp

∫
Ω
v̄qdx, (x, t) ∈ Ω× (0, t∗) ,

v̄t = ∆v̄ + K̄v̄r
∫
Ω
ūsdx, (x, t) ∈ Ω× (0, t∗) ,

ū (x, t) = v̄ (x, t) = 0, (x, t) ∈ ∂Ω× (0, t∗) ,
ū (x, 0) = u0 (x) , v̄ (x, 0) = v0 (x) , x ∈ Ω.

(2.1)

then by the comparison principle we can easily know that the solution (ū, v̄) to
problem (2.1) is a supersolution to the solution (u, v) to the problem (1.1)-(1.2).

Considering the auxiliary function

Φ(t) =

∫
Ω

(ū+ v̄)φ1dx,

where
∫
Ω
φ1 (x) dx = 1.

Differentiating Φ (t) and using (2.1), Green’s formula, we have

Φ′ (t) =

∫
Ω

(ūt + v̄t)φ1dx

= −λ1
∫
Ω

ūφ1dx+ K̄

∫
Ω

ūpφ1dx

∫
Ω

v̄qdx

− λ1

∫
Ω

v̄φ1dx+ K̄

∫
Ω

v̄rφ1dx

∫
Ω

ūsdx

= −λ1Φ(t) + K̄

∫
Ω

ūpφ1dx

∫
Ω

v̄qdx+ K̄

∫
Ω

v̄rφ1dx

∫
Ω

ūsdx(2.2)
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Applying Hölder’s and Young’s inequalities to the second and third terms on
the right hand of (2.2), we derive

K̄

∫
Ω

ūpφ1dx

∫
Ω

v̄qdx

≤ K̄(

∫
Ω

ūp+qφ1dx)

p
p+q

(

∫
Ω

φ1dx)

q
p+q

(

∫
Ω

v̄p+qφ1dx)

q
p+q

(

∫
Ω

φ
− q

p

1 dx)

p
p+q

≤ K̄
p

p+ q
(

∫
Ω

ūp+qφ1dx) + K̄
q

p+ q
(

∫
Ω

φ
− q

p

1 dx)
p
q (

∫
Ω

v̄p+qφ1dx)

≤ K̄
p

p+ q
(

∫
Ω

ūφ1dx)
p+q + K̄

q

p+ q
(

∫
Ω

φ
− q

p

1 dx)
p
q (

∫
Ω

v̄φ1dx)
p+q

≤ D1K̄Φp+q,(2.3)

and

K̄

∫
Ω

v̄rφ1dx

∫
Ω

ūsdx ≤ D2K̄Φr+s,(2.4)

where D1 = max{1, (
∫
Ω
φ
− q

p

1 dx)
p
q }, D2 = max{1, (

∫
Ω
φ
− s

r
1 dx)

r
s }. Substituting

(2.3),(2.4) into (2.2), we can lead to the inequality

Φ′ (t) ≤ −λ1Φ(t) +D1K̄Φp+q(t) +D2K̄Φr+s(t)

≤ Φ(t)
(
−λ1 + K̄D1Φ

p+q−1 + K̄D2Φ
r+s−1

)
.(2.5)

By p + q ≤ 1 and r + s ≤ 1 we can easily get that the Φp+q−1 and Φr+s−1 in
(2.5) are both monotone non-increasing about Φ.

Hence, if the initial data small enough satisfies

K̄
(
D1Φ

p+q−1
0 +D2Φ

r+s−1
0

)
< λ1,(2.6)

where Φ0 =
∫
Ω
(u0 (x) + v0 (x))φ1 (x) dx, then Φ (t) exists globally and by the

comparison principle we can know that the solution (u, v) to problem (1.1)-(1.2)
exists globally.

Case 2. min {p, r} > 1.

(Global existence) Let

ū =
φ1 (x)

(A+ t)
l1
, v̄ =

φ1 (x)

(A+ t)
l2
,

where max
Ω̄

φ1(x) = 1, A, l1, l2 are positive constants to be determined later.
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By the condition min{p, r} > 1, we can directly compute

ūt −∆ū− k1 (t) ū
p

∫
Ω

v̄qdx

= −l1 (A+ t)
−l1−1

φ1 (x) + λ1 (A+ t)
−l1 φ1 (x)

− k1 (t)φ
p
1 (x) (A+ t)

−pl1−ql2

∫
Ω

φq
1dx

≥ φ1 (x) (A+ t)
−l1

[
−l1 (A+ t)

−1
+ λ1 − K̄|Ω| (A+ t)

−(p−1)l1−ql2
]
,

(2.7)

and

v̄t −∆v̄ − k2 (t) v̄
r

∫
Ω

ūsdx

≥ φ1 (x) (A+ t)
−l2

[
−l2 (A+ t)

−1
+ λ1 − K̄|Ω| (A+ t)

−(r−1)l2−sl1
]
.(2.8)

For l1, l2 > 0, using p > 1 and r > 1 we know that − (p− 1) l1 − ql2 <

0,−(r−1)l2−sl1 < 0, it follows that −l1 (A+ t)
−1
, −K̄|Ω| (A+ t)

−(p−1)l1−ql2 ,

−l2 (A+ t)
−1

and −K̄|Ω| (A+ t)
−(r−1)l2−sl1 in (2.7) and (2.8) are monotone

increasing about t respectively.
Hence, choosing A large enough satisfies

−l1A−1+λ1−K̄|Ω|A−(p−1)l1−ql2 ≥ 0 and −l2A−1+λ1−K̄|Ω|A−(r−1)l2−sl1 ≥ 0.

Then we have

ūt −∆ū− k1 (t) ū
p

∫
Ω

v̄qdx ≥ 0 and v̄t −∆v̄ − k2(t)v̄
r

∫
Ω

ūsdx ≥ 0.

Obviously, if the initial data small enough satisfy

u0 (x) ≤
φ1 (x)

Al1
, v0 (x) ≤

φ1 (x)

Al2
, x ∈ Ω.(2.9)

Then (ū, v̄) exists globally and therefore by the comparison principle we can
deduce that the solution (u, v) to problem (1.1)-(1.2) exists globally.
(Blow-up)
(i) p > 1, 0 < q ≤ 1.
Let

v = e−
λ1
q tφ

1
q

1 (x) ,(2.10)

where
∫
Ω
φ1(x)dx = 1.

By direct computation we have

vt−∆v = −λ1
q
e−

λ1
q tφ

1
q

1 (x)+
λ1
q
e−

λ1
q tφ

1
q

1 (x)−1

q
(
1

q
−1)e−

λ1
q tφ

1
q−2

1 (x) |∇φ1|2

≤ −λ1
q
e−

λ1
q tφ

1
q

1 (x) +
λ1
q
e−

λ1
q tφ

1
q

1 (x) = 0 ≤ k2(t)v
r

∫
Ω

usdx,
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where u is the solution to the following problem ut = ∆u+K up
∫
Ω
vqdx, (x, t) ∈ Ω× (0, t∗) ,

u (x, t) = 0, (x, t) ∈ ∂Ω× (0, t∗) ,
u (x, 0) = u0 (x) , x ∈ Ω,

(2.11)

then the comparison principle yields the solution (u, v) to problem (2.10)-(2.11)
is a subsolution to the solution (u, v) to problem (1.1)-(1.2).

Next, we need to prove that u blows up in finite time.
Let

ω1 = ek1tu,(2.12)

where k1 = − λ1

p−1 .

Therefore, ω1 and u both exist globally, or both blow up.
Applying (2.11) and (2.12) we can compute that ω1 satisfies ω1t −∆ω1 = k1ω1 +Kω1

p, (x, t) ∈ Ω× (0, t∗) ,
ω1 (x, t) = 0, (x, t) ∈ ∂Ω× (0, t∗) ,
ω1 (x, 0) = u0 (x) , x ∈ Ω.

(2.13)

Considering the auxiliary function

U1 (t) =

∫
Ωε

ω1ψ1dx,

where
∫
Ωε
ψ1 (x) dx = 1.

Differentiating U1(t) and using (2.13) and Hölder’s inequality, we have

U ′
1 (t) + (µ1 − k1)U1 (t) = K

∫
Ωε

ω1
pψ1dx

≥ K

(∫
Ωε

ω1ψ1dx

)p

= KU1
p (t) .(2.14)

Now, solving the ordinary differential equation (2.14) we derive

U1
1−p (t) ≤ K

µ1 − k1
+

(
U1

1−p (0)− K

µ1 − k1

)
e(p−1)(µ1−k1)t,(2.15)

Since p > 1 and λ1 > 0 we can easily deduce that k1 = − λ1

p−1 < 0 and

µ1 − k1 > 0.
Therefore, by (2.15) we know that if initial data large enough satisfy

U1 (0) =

∫
Ωε

u0 (x)ψ1 (x) dx >

(
K

µ1 − k1

)− 1
p−1

,

v0 (x) ≥ φ
1
q

1 (x) , x ∈ Ω,(2.16)

then ω1 blows up in finite time Tω1
and

Tω1 ≤ 1

(1− p) (µ1 − k1)
ln

[
1− (µ1 − k1)U1

1−p (0)

K

]
.
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Hence, u blows up in finite time and an upper bounds for t∗ is

1

(1− p) (µ1 − k1)
ln

[
1− (µ1 − k1)U1

1−p (0)

K

]
.

(ii) p > 1, q > 1.
Similarly, let

v = e−λ1tφ1 (x) ,(2.17)

where
∫
Ω
φ1(x)dx = 1.

By direct computation we have

vt −∆v = −λ1e−λ1tφ1(x) + λ1e
−λ1tφ1 (x) = 0 ≤ k2(t)v

r

∫
Ω

usdx,

where u is the solution to the problem (2.11), then the comparison principle
yields the solution (u, v) to problem (2.17),(2.11) is a subsolution to the solution
(u, v) to problem (1.1)-(1.2).

Next, we need to prove that u blows up in finite time.
Let

ω2 = ek2tu,(2.18)

where k2 = − λ1

p−1q.

Therefore, ω2 and u both exist globally, or both blow up.
Applying (2.11) and (2.18) we can compute that ω2 satisfies ω2t −∆ω2 = k2ω2 +Kω2

p
∫
Ω
φq
1dx, (x, t) ∈ Ω× (0, t∗) ,

ω2 (x, t) = 0, (x, t) ∈ ∂Ω× (0, t∗) ,
ω2 (x, 0) = u0 (x) , x ∈ Ω.

(2.19)

Considering the auxiliary function

U2 (t) =

∫
Ωε

ω2ψ1dx,

where
∫
Ωε
ψ1 (x) dx = 1.

Differentiating U2(t) and using (2.19) and Hölder’s inequality, we have

U ′
2 (t) + (µ1 − k2)U2 (t) = K

∫
Ωε

ω2
pψ1dx

∫
Ω

φq
1dx

≥ K

(∫
Ωε

ω2ψ1dx

)p

|Ω|1−q = K|Ω|1−qU2
p (t) .(2.20)

Now, solving the ordinary differential equation (2.20) we derive

U2
1−p (t) ≤ K|Ω|1−q

µ1 − k2
+

(
U2

1−p (0)− K|Ω|1−q

µ1 − k2

)
e(p−1)(µ1−k2)t.(2.21)

Since p > 1 and λ1 > 0 we can easily deduce that k2 = − λ1

p−1q < 0 and

µ1 − k2 > 0.
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Therefore, by (2.21) we know that if initial data large enough satisfy

U2 (0) =

∫
Ωε

u0 (x)ψ1 (x) dx >

(
K|Ω|1−q

µ1 − k2

)− 1
p−1

,

v0 (x) ≥ φ1 (x) , x ∈ Ω,(2.22)

then ω2 blows up in finite time Tω2 and

Tω2
≤ 1

(1− p) (µ1 − k2)
ln

[
1− (µ1 − k2)U2

1−p (0)

K|Ω|1−q

]
.

Hence, u blows up in finite time and an upper bounds for t∗ is

1

(1− p) (µ1 − k2)
ln

[
1− (µ1 − k2)U

1−p (0)

K|Ω|1−q

]
.

Similarly, for r > 1, when the initial data is large enough, the solution of
problem (1.1)-(1.2) is blow-up in the finite time.
Case 3. max {p, r} ≤ 1,
(Global existence) For qs ≤ (1− p) (1− r) , if p = 1 or r = 1, then qs = 0.
We assume q = 0, while the discussion of s = 0 is similar. Therefore, by p ≤ 1
and the comparison principle we can deduce that the solution u to equation
(1.1)-(1.2) is global. It follows that for arbitrary T > 0, there existsM(T ) such
that

u (x, t) ≤M (T ) , x ∈ Ω, t ≤ T.

Suppose that V is the solution to the following problem Vt = ∆V + K̄ [M (T )]
s |Ω|V r, (x, t) ∈ Ω× (0, T ) ,

V (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ) ,
V (x, 0) = v0 (x) , x ∈ Ω.

Then by r ≤ 1 we can easily get that V is global and is a supersolution to
the solution v to equation (1.1)-(1.2), hence the solution to problem (1.1)-(1.2)
exists globally.

If p < 1 and r < 1, by qs ≤ (1− p) (1− r) , we can compute

0 ≤ qs

(1− p) (1− r)
≤ 1.(2.23)

Therefore, using (2.23) we know that there exists σ > 0 such that

0 ≤ q

(1− p)σ
≤ 1, 0 ≤ sσ

1− r
≤ 1,

Hence,

σp+ q ≤ σ, σs+ r ≤ 1.(2.24)

Let

ū = c1e
σt, v̄ = c2e

t,

where c1, c2 > 0 are constants to be determined later.
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Applying (2.24) we can compute

ūt −∆ū− k1 (t) ū
p

∫
Ω

v̄qdx = c1σe
σt − k1 (t) c

p
1c

q
2e

(σp+q)t|Ω|

≥
(
σ − K̄cp−1

1 cq2|Ω|
)
c1e

σt.(2.25)

v̄t −∆v̄ − k2 (t) v̄
r

∫
Ω

ūsdx = c2e
t − k2 (t) |Ω|cs1cr2e(σs+r)t

≥
(
1− K̄cs1c

r−1
2 |Ω|

)
c2e

t.(2.26)

Now, we choose c1, c2 satisfy

σ − K̄cp−1
1 cq2|Ω| ≥ 0, 1− K̄cs1c

r−1
2 |Ω| ≥ 0.

Obviously, if initial data small enough satisfy

max
Ω̄

u0 (x) < c1, max
Ω̄

v0 (x) < c2,(2.27)

then by (2.25), (2.26) and the comparison principle we can deduce that (ū, v̄)
is a supersolution to the solution (u, v) to problem (1.1)-(1.2).
(Blow-up) For qs > (1− p) (1− r) , let

u =
C1φ1 (x)

(1− τt)
α , v =

C2φ1 (x)

(1− τt)
β
, x ∈ Ω, 0 ≤ t <

1

τ
,

where max
Ω̄

φ1 (x) = 1, α = q+1−r
qs−(1−p)(1−r) , β = s+1−p

qs−(1−p)(1−r) , τ, C1, C2 > 0 are

constants to be determined later.
Let

γ = min {−pα− qβ + α+ 1,−sα− rβ + β + 1} ,
then by the definition of α, β we can easily know γ = 0.

By directly computation we deduce

ut −∆u− k1 (t)u
p

∫
Ω

vqdx

= ατC1φ1 (1− τt)
−α−1

+ λ1C1φ1 (1− τt)
−α

− k1 (t)C
p
1C

q
2φ

p
1 (1− τt)

−pα−qβ
∫
Ω

φq
1dx

≤ C1φ1 (1− τt)
−α−1

[
ατ + λ1 (1− τt)−KCp−1

1 Cq
2Cφq

(1− τt)
γ
]

= C1φ1(1− τt)−α−1[ατ + λ1(1− τt)−KCp−1
1 Cq

2Cφq
],(2.28)

and

vt −∆v − k2 (t) v
r

∫
Ω

usdx

≤ C2φ1 (1− τt)
−β−1 [

βτ + λ1 (1− τt)−KCs
1C

r−1
2 Cφs

]
,(2.29)

where Cφq
=

∫
Ω
φq
1dx,Cφs

=
∫
Ω
φs
1dx.
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Choosing C1, C2 > 0 satisfy{
λ1 < Kδp−1Cp−1

1 Cq
2Cφq ,

λ1 < Kδr−1Cs
1C

r−1
2 Cφs

,

and

τ = min

{
KCp−1

1 Cq
2Cφq

− λ1

α
,
KCs

1C
r−1
2 Cφs − λ1
β

}
> 0.(2.30)

Therefore, if initial data large enough satisfy

u0 (x) ≥ C1φ1 (x) , v0 (x) ≥ C2φ1 (x) ,(2.31)

then using (2.28)-(2.31) and the comparison principle we obtain that (u, v) is
a subsolution to problem (1.1)-(1.2). Therefore, the solution (u, v) to problem
(1.1)-(1.2) blows up in finite time t∗, and an upper bound for t∗ is

1

τ
,

which completes the proof.

References

[1] A.G. Bao, X.F. Song, Bounds for the blowup time of the solution to a parabolic system

with nonlocal factors in nonlinearities, Comput. Math. Appl. 71 (2016) 723-729.
[2] M. Escobedo, M.A. Herrero, A semilinear parabolic system in a bounded domain, Ann.

Mat. Pura Appl. 165(4) (1993) 315-336.

[3] B. Hu, Blow-Up Theories for Semilinear Parabolic Equations, Lecture Notes in Mathe-
matics, Springer, Heidelberg, 2011.

[4] L.E. Payne, G.A. Philippin, Blow-up phenomena for a class of parabolic systems with

time dependent coefficients, Appl. Math. 3 (2012) 325-330.
[5] R. Quittner, P. Souplet, Superlinear parabolic problems: Blow-up, global existence and

steady states, Birkhauser, Basel, 2007.

[6] J. Smoller, Shock Waves and Reaction-Diffusion Equations, second edition, Springer-
Verlag, 1994.

[7] Ph. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal.
29(6) (1998) 1301-1334.

[8] X.Y. Tao, Z.B. Fang, Blow-up phenomena for a nonlinear reaction-diffusion system with

time dependent coefficients, Comput. Math. Appl. 74 (2017) 2520-2528.
[9] X.J. Xu, Z. Ye, Life span of solutions with large initial data for a class of coupled

parabolic systems, Z. Angew. Math. Phys. 64 (2013) 705-717.

Eun-Seok Kim
Department of Mathematics, Chonnam National University,
Gwangju, 61186, Korea.



678 Eun-Seok Kim

Institute for General Education, Sunchon National University,
Sunchon, 57922, Korea.

E-mail:manmunje@hanmail.net


