References
- A. B. Al'shin, M. O. Korpusov, and A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, De Gruyter Series in Nonlinear Analysis and Applications, 15, Walter de Gruyter & Co., Berlin, 2011. https://doi.org/10.1515/9783110255294
- J. Bebernes and A. Bressan, Thermal behavior for a confined reactive gas, J. Differential Equations 44 (1982), no. 1, 118-133. https://doi.org/10.1016/0022-0396(82)90028-6
- H. Di and Y. Shang, Global well-posedness for a nonlocal semilinear pseudo-parabolic equation with conical degeneration, J. Differential Equations 269 (2020), no. 5, 4566-4597. https://doi.org/10.1016/j.jde.2020.03.030
- H. Di, Y. Shang, and X. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett. 64 (2017), 67-73. https://doi.org/10.1016/j.aml.2016.08.013
- E. DiBenedetto and M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J. 30 (1981), no. 6, 821-854. https://doi.org/10.1512/iumj.1981.30.30062
- E. S. Dzektser, Generalization of equations of motion of underground water with free surface, Dokl. Akad. Nauk SSSR. 202 (1972), no. 5, 1031-1033.
- M. Escobedo and M. A. Herrero, A semilinear parabolic system in a bounded domain, Ann. Mat. Pura Appl. 165 (1993), no. 1, 315-336. https://doi.org/10.1007/BF01765854
- Z. Fang and Y. Wang, Blow-up analysis for a semilinear parabolic equation with time- dependent coefficients under nonlinear boundary flux, Z. Angew. Math. Phys. 66 (2015), no. 5, 2525-2541. https://doi.org/10.1007/s00033-015-0537-7
- M. O. Korpusov and A. G. Sveshnikov, Three-dimensional nonlinear evolution equations of pseudo-parabolic type in problems of mathematicial physics, Comput. Math. Math. Phys. 43 (2003), no. 12, 1765-1797; translated from Zh. Vychisl. Mat. Mat. Fiz. 43 (2003), no. 12, 1835-1869.
- J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, 1969.
- Y. Liu, Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions, Math. Comput. Modelling 57 (2013), no. 3-4, 926-931. https://doi.org/10.1016/j.mcm.2012.10.002
- Y. Liu, W. Jiang, and F. Huang, Asymptotic behaviour of solutions to some pseudoparabolic equations, Appl. Math. Lett. 25 (2012), no. 2, 111-114. https://doi.org/ 10.1016/j.aml.2011.07.012
- P. Luo, Blow-up phenomena for a pseudo-parabolic equation, Math. Methods Appl. Sci. 38 (2015), no. 12, 2636-2641. https://doi.org/10.1002/mma.3253
- X. Lv and X. Song, Bounds of the blowup time in parabolic equations with weighted source under nonhomogeneous Neumann boundary condition, Math. Methods Appl. Sci. 37 (2014), no. 7, 1019-1028. https://doi.org/10.1002/mma.2859
- L. Ma and Z. Fang, Blow-up analysis for a reaction-diffusion equation with weighted nonlocal inner absorptions under nonlinear boundary flux, Nonlinear Anal. Real World Appl. 32 (2016), 338-354. https://doi.org/10.1016/j.nonrwa.2016.05.005
- L. E. Payne, G. A. Philippin, and S. Vernier Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, I, Z. Angew. Math. Phys. 61 (2010), no. 6, 999-1007. https://doi.org/10.1007/s00033-010-0071-6
- L. E. Payne, G. A. Philippin, and S. Vernier Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, II, Nonlinear Anal. 73 (2010), no. 4, 971-978. https://doi.org/10.1016/j. na.2010.04.023
- L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Neumann conditions, Appl. Anal. 85 (2006), no. 10, 1301-1311. https://doi. org/10.1080/00036810600915730
- L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl. 328 (2007), no. 2, 1196-1205. https://doi.org/10.1016/j.jmaa.2006.06.015
- X. Peng, Y. Shang, and X. Zheng, Blow-up phenomena for some nonlinear pseudoparabolic equations, Appl. Math. Lett. 56 (2016), 17-22. https://doi.org/10.1016/j. aml.2015.12.005
- M. Peszynska, R. Showalter, and S.-Y. Yi, Homogenization of a pseudoparabolic system, Appl. Anal. 88 (2009), no. 9, 1265-1282. https://doi.org/10.1080/00036810903277077
- J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math. 48 (1992), no. 3, 249-264. https://doi.org/10.1093/imamat/48.3.249
- R. E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space, SIAM J. Math. Anal. 3 (1972), 527-543. https://doi.org/10. 1137/0503051 https://doi.org/10.1137/0503051
- S. L. Sobolev, On a new problem of mathematical physics, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 18 (1954), no. 1, 3-50.
- J. C. Song, Lower bounds for the blow-up time in a non-local reaction-diffusion problem, Appl. Math. Lett. 24 (2011), no. 5, 793-796. https://doi.org/10.1016/j.aml.2010.12.042
- X. Song and X. Lv, Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source, Appl. Math. Comput. 236 (2014), 78-92. https://doi.org/10.1016/j.amc.2014.03.023
-
G. Tang, Y. Li, and X. Yang, Lower bounds for the blow-up time of the nonlinear nonlocal reaction diffusion problems in
$R^N$ ($N{\geq}3$ ), Bound. Value Probl. 2014 (2014), 265, 5 pp. https://doi.org/10.1186/s13661-014-0265-5 - R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal. 264 (2013), no. 12, 2732-2763. https://doi.org/10.1016/j.jfa.2013.03.010