DOI QR코드

DOI QR Code

BLOW-UP TIME AND BLOW-UP RATE FOR PSEUDO-PARABOLIC EQUATIONS WITH WEIGHTED SOURCE

  • Di, Huafei (School of Mathematics and Information Science Guangzhou University) ;
  • Shang, Yadong (School of Mathematics and Information Science Guangzhou University)
  • Received : 2020.02.05
  • Accepted : 2020.07.30
  • Published : 2020.10.31

Abstract

In this paper, we are concerned with the blow-up phenomena for a class of pseudo-parabolic equations with weighted source ut - △u - △ut = a(x)f(u) subject to Dirichlet (or Neumann) boundary conditions in any smooth bounded domain Ω ⊂ ℝn (n ≥ 1). Firstly, we obtain the upper and lower bounds for blow-up time of solutions to these problems. Moreover, we also give the estimates of blow-up rate of solutions under some suitable conditions. Finally, three models are presented to illustrate our main results. In some special cases, we can even get some exact values of blow-up time and blow-up rate.

Keywords

References

  1. A. B. Al'shin, M. O. Korpusov, and A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, De Gruyter Series in Nonlinear Analysis and Applications, 15, Walter de Gruyter & Co., Berlin, 2011. https://doi.org/10.1515/9783110255294
  2. J. Bebernes and A. Bressan, Thermal behavior for a confined reactive gas, J. Differential Equations 44 (1982), no. 1, 118-133. https://doi.org/10.1016/0022-0396(82)90028-6
  3. H. Di and Y. Shang, Global well-posedness for a nonlocal semilinear pseudo-parabolic equation with conical degeneration, J. Differential Equations 269 (2020), no. 5, 4566-4597. https://doi.org/10.1016/j.jde.2020.03.030
  4. H. Di, Y. Shang, and X. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett. 64 (2017), 67-73. https://doi.org/10.1016/j.aml.2016.08.013
  5. E. DiBenedetto and M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J. 30 (1981), no. 6, 821-854. https://doi.org/10.1512/iumj.1981.30.30062
  6. E. S. Dzektser, Generalization of equations of motion of underground water with free surface, Dokl. Akad. Nauk SSSR. 202 (1972), no. 5, 1031-1033.
  7. M. Escobedo and M. A. Herrero, A semilinear parabolic system in a bounded domain, Ann. Mat. Pura Appl. 165 (1993), no. 1, 315-336. https://doi.org/10.1007/BF01765854
  8. Z. Fang and Y. Wang, Blow-up analysis for a semilinear parabolic equation with time- dependent coefficients under nonlinear boundary flux, Z. Angew. Math. Phys. 66 (2015), no. 5, 2525-2541. https://doi.org/10.1007/s00033-015-0537-7
  9. M. O. Korpusov and A. G. Sveshnikov, Three-dimensional nonlinear evolution equations of pseudo-parabolic type in problems of mathematicial physics, Comput. Math. Math. Phys. 43 (2003), no. 12, 1765-1797; translated from Zh. Vychisl. Mat. Mat. Fiz. 43 (2003), no. 12, 1835-1869.
  10. J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, 1969.
  11. Y. Liu, Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions, Math. Comput. Modelling 57 (2013), no. 3-4, 926-931. https://doi.org/10.1016/j.mcm.2012.10.002
  12. Y. Liu, W. Jiang, and F. Huang, Asymptotic behaviour of solutions to some pseudoparabolic equations, Appl. Math. Lett. 25 (2012), no. 2, 111-114. https://doi.org/ 10.1016/j.aml.2011.07.012
  13. P. Luo, Blow-up phenomena for a pseudo-parabolic equation, Math. Methods Appl. Sci. 38 (2015), no. 12, 2636-2641. https://doi.org/10.1002/mma.3253
  14. X. Lv and X. Song, Bounds of the blowup time in parabolic equations with weighted source under nonhomogeneous Neumann boundary condition, Math. Methods Appl. Sci. 37 (2014), no. 7, 1019-1028. https://doi.org/10.1002/mma.2859
  15. L. Ma and Z. Fang, Blow-up analysis for a reaction-diffusion equation with weighted nonlocal inner absorptions under nonlinear boundary flux, Nonlinear Anal. Real World Appl. 32 (2016), 338-354. https://doi.org/10.1016/j.nonrwa.2016.05.005
  16. L. E. Payne, G. A. Philippin, and S. Vernier Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, I, Z. Angew. Math. Phys. 61 (2010), no. 6, 999-1007. https://doi.org/10.1007/s00033-010-0071-6
  17. L. E. Payne, G. A. Philippin, and S. Vernier Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, II, Nonlinear Anal. 73 (2010), no. 4, 971-978. https://doi.org/10.1016/j. na.2010.04.023
  18. L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Neumann conditions, Appl. Anal. 85 (2006), no. 10, 1301-1311. https://doi. org/10.1080/00036810600915730
  19. L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl. 328 (2007), no. 2, 1196-1205. https://doi.org/10.1016/j.jmaa.2006.06.015
  20. X. Peng, Y. Shang, and X. Zheng, Blow-up phenomena for some nonlinear pseudoparabolic equations, Appl. Math. Lett. 56 (2016), 17-22. https://doi.org/10.1016/j. aml.2015.12.005
  21. M. Peszynska, R. Showalter, and S.-Y. Yi, Homogenization of a pseudoparabolic system, Appl. Anal. 88 (2009), no. 9, 1265-1282. https://doi.org/10.1080/00036810903277077
  22. J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math. 48 (1992), no. 3, 249-264. https://doi.org/10.1093/imamat/48.3.249
  23. R. E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space, SIAM J. Math. Anal. 3 (1972), 527-543. https://doi.org/10. 1137/0503051 https://doi.org/10.1137/0503051
  24. S. L. Sobolev, On a new problem of mathematical physics, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 18 (1954), no. 1, 3-50.
  25. J. C. Song, Lower bounds for the blow-up time in a non-local reaction-diffusion problem, Appl. Math. Lett. 24 (2011), no. 5, 793-796. https://doi.org/10.1016/j.aml.2010.12.042
  26. X. Song and X. Lv, Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source, Appl. Math. Comput. 236 (2014), 78-92. https://doi.org/10.1016/j.amc.2014.03.023
  27. G. Tang, Y. Li, and X. Yang, Lower bounds for the blow-up time of the nonlinear nonlocal reaction diffusion problems in $R^N$ ($N{\geq}3$), Bound. Value Probl. 2014 (2014), 265, 5 pp. https://doi.org/10.1186/s13661-014-0265-5
  28. R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal. 264 (2013), no. 12, 2732-2763. https://doi.org/10.1016/j.jfa.2013.03.010