• 제목/요약/키워드: Blood pressure sensor

검색결과 113건 처리시간 0.021초

실시간 맥박 및 혈압 측정을 위한 폴리머 기판 압력센서 개발 (Development of Pressure Sensor on Polymer Substrate for Real-time Pulse and Blood Pressure Measurements)

  • 김진태;김성일;정연호
    • 한국전기전자재료학회논문지
    • /
    • 제26권9호
    • /
    • pp.669-676
    • /
    • 2013
  • In this study, we introduce a polymer(polyimide) based pressure sensor to measure real-time heart beat and blood pressure. The sensor have been designed with consideration of skin compatibility of material, cost effectiveness, manufacturability and wireless detection. The designed sensor was composed of inductor coils and an air-gap capacitor which generate self-resonant frequency when electrical source is applied on the system. The sensor was obtained with metalization, etching, photolithography, polymer adhesive bonding and laser cutting. The fabricated sensor was shaped in circular type with 10mm diameter and 0.45 mm thickness to fit radial artery. Resonant frequencies of the fabricated sensors were in the range of 91~96 MHz on 760 mmHg pressurized environment. Also the sensor has good linearity without any pressure-frequency hysteresis. Sensitivity of the sensor was 145.5 kHz/mmHg and accuracy was less than 2 mmHg. Real-time heart beat measurement was executed with a developed hand-held measurement system. Possibility of real-time blood pressure measurement was showed with simulated artery system. After installation of the sensor on skin above radial artery, simple real blood pressure measurement was performed with 64 mmHg blood pressure variation.

손목형 혈압계의 센서부 개선에 대한 연구 (Improvement of a sensor unit for wrist blood pressure monitor)

  • 구상준;권종원;박용만;;김희식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.380-382
    • /
    • 2007
  • As the society changes more to the aging society in future, many healthcare product are developed and distributed more on the market. The digital wrist band tye blood pressure device for home use are popular already in the market. It is useful for checking blood pressure level at home and control of hypertension. Especially. It is very essential home device to check the health condition of blood circulation disease. Nowadays many product types are available. But the measurement accuracy of blood pressure is not enough compared to the mechanical type. It needs to be upgraded to assure the precise health data enough to use in the hospital. The structure, feature and output signal of capacitor type pressure sensors are analyzed. An improved design fa capacitor sensor is suggested. It shows more precise health data after use on a wrist band type health unit. They can be applied for remote u-health medical service.

  • PDF

Development of an Automatic Blood Pressure Device based on Korotkoff Sounds

  • Li, Xiong;Im, Jae Joong
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.227-236
    • /
    • 2019
  • In this study, we develop a Korotkoff sound based automatic blood pressure measurement device including sensor, hardware, and analysis algorithm. PVDF-based sensor pattern was developed to function as a vibration sensor to detect of Korotkoff sounds, and the film's output was connected to an impedance-matching circuit. An algorithm for determining starting and ending points of the Korotkoff sounds was established, and clinical data from subjects were acquired and analyzed to find the relationship between the values obtained by the auscultatory method and from the developed device. The results from 86 out of 90 systolic measurements and 84 out of 90 diastolic measurements indicate that the developed device pass the validation criteria of the international protocol. Correlation coefficients for the values obtained by the auscultatory method and from the developed device were 0.982 and 0.980 for systolic and diastolic blood pressure, respectively. Blood pressure measurements based on Korotkoff sound signals obtained by using the developed PVDF film-based sensor module are accurate and highly correlated with measurements obtained by the traditional auscultatory method.

LC 공진형 압력 센서를 이용한 돼지 경골 동맥의 실시간 혈압 측정 (Real-time Blood Pressure Monitoring in Porcine Tibial Artery Using LC Resonant Pressure Sensor)

  • 최원석;김진태;정연호
    • 한국전기전자재료학회논문지
    • /
    • 제25권6호
    • /
    • pp.445-450
    • /
    • 2012
  • We have developed an implantable wireless sensor for real time pressure monitoring of blood circulation system. MEMS (micro-electro-mechanical system) technology was adopted as a sensor development method. The sensor is composed of photolithographically patterned inductors and a distributed capacitor in gap between the inductors. A resulting LC resonant system produces its resonant frequency in range of 269 to 284 MHz at 740 mmHg. To read the resonant frequency changed by blood pressure variation, we developed a custom readout system based on a network analyzer functionality. The bench-top testing of the pressure sensors showed good mechanical and electrical functionality. A sensor was implanted into tibial artery of farm pig, and interrogated wirelessly with accurate readings of blood pressure. After 45 days, the sensor's electrical response and histopathology were studied with good frequency reading and biocompatibility.

Blood Oxygen Level Sensor를 이용한 대뇌혈류증가 장치에 관한 연구 (A Study on Cerebral Blood Flow Enhancement Device Using Blood Oxygen Level Sensor)

  • 임정현;조인희;김영길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.188-192
    • /
    • 2018
  • 대뇌혈류를 증가 시키는 수술은 뇌경색의 치료방법중 하나이다. 그러나 수술과 같은 침습적인 방법은 환자에게 수술 후유증 또는 부작용을 부담하게 한다. 이러한 침습적인 방법을 보완하기 위해 사람의 혈압을 이용해, 사지에 압박을 가하여 대뇌 혈류를 증가 시키는 비 침습적인 장치도 등장하였다. 그러나 속도와 정확성이 떨어지는 문제점이 제기되었다. 본 논문에서는, 정확한 측정과 측정하는 데에 걸리는 시간을 기존의 장치보다 개선하기 위해, Blood Oxygen Level Sensor를 이용하여, 양팔에 압력을 주면서 각 팔의 Perfusion Index를 측정하여, Perfusion Index가 일정 값 이하로 떨어지는 순간의 75% 압력을 팔에 가하고, 다리에는 팔에서 구해진 압력 값을 이용해 계산하여 얻은 압력을 가한다. 기존의 혈압 측정식 대뇌혈류증가 장치와 같이, 혈류량을 20%이상 증가시킬 수 있고, 또한 측정 시간도 단축한 결과를 얻어 뇌경색 환자에게 선택적으로 사용할 수 있다.

  • PDF

혈압 측정을 위한 외팔보형 접촉힘 센서 어레이 (A Cantilever Type Contact Force Sensor Array for Blood Pressure Measurement)

  • 이병렬;정진우;전국진
    • 센서학회지
    • /
    • 제21권2호
    • /
    • pp.121-126
    • /
    • 2012
  • Piezoresistive type contact force sensor array is fabricated by (111) Silicon bulk micromachining for continuous blood pressure monitoring. Length and width of the unit sensor structure is $200{\mu}m$ and $190{\mu}m$, respectively. The gap between sensing elements is only $10{\mu}m$. To achieve wafer level packaging, the sensor structure is capped by PDMS soft cap using wafer molding and bonding process with $10{\mu}m$ alignment precision. The resistance change over contact force was measured to verify the feasibility of the proposed sensor scheme. The maximum measurement range and resolution is 900 mm Hg and 0.57 mm Hg, respectively.

Quatrz 웨이퍼의 직접접합과 극초단 레이저 가공을 이용한 체내 이식형 혈압센서 개발 (Development of Implantable Blood Pressure Sensor Using Quartz Wafer Direct Bonding and Ultrafast Laser Cutting)

  • 김성일;김응보;소상균;최지연;정연호
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권5호
    • /
    • pp.168-177
    • /
    • 2016
  • In this paper we present an implantable pressure sensor to measure real-time blood pressure by monitoring mechanical movement of artery. Sensor is composed of inductors (L) and capacitors (C) which are formed by microfabrication and direct bonding on two biocompatible substrates (quartz). When electrical potential is applied to the sensor, the inductors and capacitors generates a LC resonance circuit and produce characteristic resonant frequencies. Real-time variation of the resonant frequency is monitored by an external measurement system using inductive coupling. Structural and electrical simulation was performed by Computer Aided Engineering (CAE) programs, ANSYS and HFSS, to optimize geometry of sensor. Ultrafast laser (femto-second) cutting and MEMS process were executed as sensor fabrication methods with consideration of brittleness of the substrate and small radial artery size. After whole fabrication processes, we got sensors of $3mm{\times}15mm{\times}0.5mm$. Resonant frequency of the sensor was around 90 MHz at atmosphere (760 mmHg), and the sensor has good linearity without any hysteresis. Longterm (5 years) stability of the sensor was verified by thermal acceleration testing with Arrhenius model. Moreover, in-vitro cytotoxicity test was done to show biocompatiblity of the sensor and validation of real-time blood pressure measurement was verified with animal test by implant of the sensor. By integration with development of external interrogation system, the proposed sensor system will be a promising method to measure real-time blood pressure.

Flexible wireless pressure sensor module

  • Shin Kyu-Ho;Moon Chang-Ryoul;Lee Tae-Hee;Lim Chang-Hyun;Kim Young-Jun
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2004년도 추계 기술심포지움 초록집
    • /
    • pp.3-4
    • /
    • 2004
  • A flexible Packaging scheme, which embedded chip packaging, has been developed using a thinned silicon chip. Mechanical characteristics of thinned silicon chips are examined by bending test and finite element analysis. Thinned silicon chips ($t<50{\mu}m$) are fabricated by chemical etching process to avoid possible surface damages on them. These technologies can be use for a real-time monitoring of blood pressure. Our research targets are implantable blood pressure sensor and its telemetric measurement. By winding round the coronary arteries, we can measure the blood pressure by capacitance variation of blood vessel.

  • PDF

광학 센서를 이용한 비관혈적 혈압 측정의 오차 보정 (Compensation of Error in Noninvasive Blood Pressure Measurement System Using Optical Sensor)

  • 고재일;정인철;이동희;박신우;황성오;박소미;김기연;주현실;윤형로
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.178-186
    • /
    • 2007
  • This study is attempted to correct an error of electronic blood pressure meter with an optical sensor. In general, for a hospitalized patient, ECG, blood pressure, oxygen saturation, and respiration are basically measured to monitor the patient's condition. Opening of a blood vessel after it is occluded by pressurizing the cuff influences the blood flow of peripheral blood vessels as well as oscillation changes in the cuff. Blood vessels are occluded and peripheral blood flow disappears at cuff pressure above the examinee's blood pressure, while blood vessels are opened and peripheral blood flow appears again at cuff pressure under the examinee's blood pressure. Then Disappear-Appear Point Length(DAPL) of peripheral blood flow can be judged with the signal of peripheral blood flow, thus is available as a factor of error correction for electronic blood pressure meter. Also, systolic or diastolic blood pressure can be corrected with Appear-Point-Pressure(APP) of cuff pressure at a point where blood flow occurs and Appear-Maximum Pressure(AMP) of cuff pressure at the maximum amplitude point of peripheral blood flow after peripheral blood flow appears again. For verification, 27 examinees were selected, and their blood value was obtained through experimental procedure of 4 stages including induction of blood pressure change. The examinees were divided into two groups of experimental group and control group, regression analysis was conducted for experimental group, and correction of a blood pressure error was verified with optical signal by applying the regression equation calculated in experimental group to control group. As an experimental result, mean of the whole measurement errors was 5mmHg or more, which did not meet the standard fur blood pressure meter. As a result of correcting blood pressure measurements with data of DAPL, APP, and AMP as drawn out of PPG signal, systolic blood pressure, mean blood pressure, and diastolic blood pressure were $-0.6{\pm}4.4mmHg,\;-1.0{\pm}3.9mmHg$ and $-1.3{\pm}5.4mmHg$, respectively, indicating that mean of the whole measurement errors was greatly improved, and standard deviation was decreased.

Systolic blood pressure measurement algorithm with mmWave radar sensor

  • Shi, JingYao;Lee, KangYoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1209-1223
    • /
    • 2022
  • Blood pressure is one of the key physiological parameters for determining human health, and can prove whether human cardiovascular function is healthy or not. In general, what we call blood pressure refers to arterial blood pressure. Blood pressure fluctuates greatly and, due to the influence of various factors, even varies with each heartbeat. Therefore, achievement of continuous blood pressure measurement is particularly important for more accurate diagnosis. It is difficult to achieve long-term continuous blood pressure monitoring with traditional measurement methods due to the continuous wear of measuring instruments. On the other hand, radar technology is not easily affected by environmental factors and is capable of strong penetration. In this study, by using machine learning, tried to develop a linear blood pressure prediction model using data from a public database. The radar sensor evaluates the measured object, obtains the pulse waveform data, calculates the pulse transmission time, and obtains the blood pressure data through linear model regression analysis. Confirm its availability to facilitate follow-up research, such as integrating other sensors, collecting temperature, heartbeat, respiratory pulse and other data, and seeking medical treatment in time in case of abnormalities.