• Title/Summary/Keyword: Blood formation

Search Result 717, Processing Time 0.03 seconds

A microscopic study on the rheological properties of human blood in low concentration limit

  • Kang, In-Seok
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.2
    • /
    • pp.77-86
    • /
    • 2002
  • A microscopic theoretical study is performed to predict the rheological properties of human blood in the low concentration limit. The shear thinning behavior of blood in the low shear limit is studied by considering the aggregate formation of red blood cells, which is called the rouleaux formation. Then the constitutive equations of blood in the high shear limit are derived for various flow situations by considering the unique features of deformation of blood cells. Specifically, the effects of the surface-area-preserving constraint and the lank-treading motion of blood cells on the rheological properties are studied.

Ultrastructural Changes in the Formation of Yolk Granules and Vitelline Envelope in Aedes togoi (토고숲 모기 (Aedes togoi)의 난황립 및 난황막 형성에 따른 미세구조적 변화)

  • Lee, Yang-Rim;Sol, Tae-Min
    • Applied Microscopy
    • /
    • v.24 no.1
    • /
    • pp.114-122
    • /
    • 1994
  • Drastic changes were observed in egg chamber during oogenesis of Aedes togoi immediately after blood meal. The egg chamber, in which the oocyte remains at previtellogenic stage before blood meal, shows very little change in size even for 3 days after emergence but increased 25 folds in volume within 60 hours after blood meal, presumably due to rapid yolk formation. Upto 6 hours after blood meal structures considered to be the precursor of the yolk granules were not observed in the space between follicle cells and oocyte. Vitelline bodies, which are similar to dense bodies secreted from follicle cells, appeared in the space at 10 hours after blood meal. Although vitelline bodies were fused to form vitelline layer, these bodies seem to contribute to the formation of yolk granules. Nurse cells are connected to oocytes by cytoplasmic bridge before blood meal, but the cells are absorbed into oocyte at 6 hours after blood meal.

  • PDF

Zinc Enhances Neutrophil Extracellular Trap Formation of Porcine Peripheral Blood Polymorphonuclear Cells through Tumor Necrosis Factor-Alpha from Peripheral Blood Mononuclear Cells

  • Heo, Ju-Haeng;Kim, Hakhyun;Kang, Byeong-Teck;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.37 no.5
    • /
    • pp.249-254
    • /
    • 2020
  • Neutrophil extracellular trap (NET) formation is an immune response for the invasion of microbes. The purpose of this study is to examine the effect of zinc on NET formation of porcine peripheral blood polymorphonuclear cells (PMNs). The NET formation of PMNs was measured by fluorescence microplate reader. The production of tumor necrosis factor (TNF)-α in the culture supernatants from zinc-treated peripheral blood mononuclear cells (PBMCs) was measured by enzyme-linked immunosorbent assay (ELISA). Zinc itself did not have no effect on NET formation. However, the NET formation of PMNs was increased by culture supernatants from PBMCs treated with zinc. Also, the NET formation of PMNs was increased by recombinant porcine (rp) TNF-α. The production of TNF-α in PBMCs culture supernatants was shown to increase upon zinc treatments. These NET formations of PMNs increased by either culture supernatant from PBMCs treated with zinc or rpTNF-α were inhibited by treatment of anti-rpTNF-α polyclonal antibody (pAb). These results suggested that zinc has an immunostimulating effect on the NET formation of PMNs, which is mediated by TNF-α released from zinc-treated PBMCs. Therefore, zinc may play an important role for NET formation in the defense of porcine inflammatory diseases.

Change in Rouleau Formation of Red Blood Cells by Pulse Magnetic Field Stimulus in the Hand (펄스자기장 자극에 의한 손의 적혈구 형태학적 변화)

  • Hwang, Do Guwn
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • The change of rouleau formation of red blood cells in the hand stimulated by pulse magnetic field having a maximum intensity of 0.27 Tesla and pulse duration of 0.102 msec was investigated. Before pulse magnetic field stimulus, the red blood cells of test subject were adjoined over ten and the flow of cells was slowed. However after the stimulus in the hand during 10 minutes, the red blood cells adjoined over tens was spreaded out each other and its motion was fast. Also the red blood cells of left hand unstimulated by pulse magnetic field were spreaded out each other, even though the right hand was stimulated during 10 minute. It prove that the rouleau formation of red blood cells can be improve in the whole body in spite of stimulus in the hand because the blood is flowing a whole body.

Effect of Kamiinsamyangyoung-tang on Immune Response and Blood Formation

  • Park, Kyung-Mi
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.262-269
    • /
    • 2005
  • Kamiinsamyangyoung-tang(KIT) has been widely used to treat amenorrhea and bradymenorrea caused from vital energy and blood deficit. KIT was composed of Insamyangyoung-tang, Cervi Cornu Pantotrichum and Hominis Placenta. The aim of this study is to investigate effect of KIT on Immune response and Blood formation. We investigated thymocytes, splenocytes population, ${\gamma}$-interferon, IL-2, IL-4, NO and phagocytic activity. We found that KIT had no effect on the Th and Tc cell population of thymocytes, Th cell population of splenocytes and ${\gamma}$-interferon quantity was decreased. KIT decreased the formation of Nitric Oxide from abdominal macrophage, on the other hand, it had no influence on the quantity of IL-2, IL-4.

Measurement of RBC (red blood cell) deformability using 3D Printed Chip combined with Smartphone (스마트 폰 기반 3D 프린팅 칩을 이용한 적혈구 변형성 측정)

  • Lee, Suhwan;Hong, Hyeonji;Yeom, Eunseop;Song, Jae Min
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.103-108
    • /
    • 2020
  • RBC (red blood cell) deformability is one of factors inducing blood shear thinning effect. Reduction of RBC deformability increases blood viscosity in high shear region. In this study, 3D printed chip with proper distribution of wall shear rate (WSR) was proposed to measure RBC deformability of blood samples. To fabricate 3D printed chip, the design of 3D printed chip determined through numerical simulation was modified based on the resolution of the 3D printer. For the estimation of pressure drop in the 3D printed chip, two bypass outlets with low and high WSR are exposed to atmospheric pressure through the needles. By positioning the outlet of needles in the gravity direction, the formation of droplets at bypass outlets can be captured by smartphone. Through image processing and fast Fourier transform (FFT) analysis, the frequency of droplet formation was analyzed. Since the frequency of droplet formation is related with the pressure at bypass, high pressure drop caused by reduction of RBC deformability can be estimated by monitoring the formation of blood droplets using the smartphone.

Fucoidan Increases Porcine Neutrophil Extracellular Trap Formation through TNF-α from Peripheral Blood Mononuclear Cells

  • Changwoo Nahm;Yoonhoi Koo;Taesik Yun;Hakhyun Kim;Byeong-Teck Kang;Mhan-Pyo Yang
    • Journal of Veterinary Clinics
    • /
    • v.40 no.3
    • /
    • pp.175-181
    • /
    • 2023
  • Fucoidan extracted from brown seaweed has a variety of biological activities. Neutrophil extracellular traps (NETs) formation is an immune response for the invasion of pathogens. Neutrophils release granule protein and chromatin that form extracellular fibers that bind microbes. These NETs degrade virulence factors and kill bacteria. The aim of this study was to investigate the effect of fucoidan on NET formation of porcine peripheral blood polymorphonuclear cells (PMNs). The NET formation was determined by fluorescence emission of propidium iodide (PI) in PMNs by a fluorescence microplate reader. The production of tumor necrosis factor (TNF)-α from peripheral blood mononuclear cells (PBMCs) was measured by ELISA method. Fucoidan itself did not show any direct effect on NET formation. However, NET formation of PMNs was increased by the culture supernatant from PBMCs treated with fucoidan. The NET formation of PMNs were also enhanced by treatment with recombinant porcine (rp) TNF-α. The ability of culture supernatant from PBMCs treated with fucoidan to increase the NET formation of PMNs was inhibited by addition of goat anti-rp TNF-α polyclonal antibody (pAb) (IgG) prior to the culture. The increase of NET formation by rp TNF-α was also inhibited by goat anti-rp TNF-α pAb (IgG). The level of TNF-α in culture supernatant from PBMCs was increased by treatment with fucoidan. These results suggest that fucoidan increases porcine NET formation, which is mediated by TNF-α produced from PBMCs.

A Numerical Analysis on the Curved Bileaflet Mechanical Heart Valve (MHV): Leaflet Motion and Blood Flow in an Elastic Blood Vessel

  • Bang, Jin-Seok;Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1761-1772
    • /
    • 2005
  • In blood flow passing through the mechanical heart valve (MHV) and elastic blood vessel, hemolysis and platelet activation causing thrombus formation can be seen owing to the shear stress in the blood. Also, fracture and deformation of leaflets can be observed depending on the shape and material properties of the leaflets which is opened and closed in a cycle. Hence, comprehensive study is needed on the hemodynamics which is associated with the motion of leaflet and elastic blood vessel in terms of fluid-structure interaction. In this paper, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in light of fluid-structure interaction. From this analysis fluttering phenomenon and rebound of the leaflet have been observed and recirculation and regurgitation have been found in the flow fields of the blood. Also, the pressure distribution and the radial displacement of the elastic blood vessel have been obtained. The motion of the leaflet and flow fields of the blood have shown similar tendency compared with the previous experiments carried out in other studies. The present study can contribute to the design methodology for the curved bileaflet mechanical heart valve. Furthermore, the proposed fluid-structure interaction method will be effectively used in various fields where the interaction between fluid flow and structure are involved.

Design of 3D printed chip for thrombus measurement and feasibility study for smoking effect (혈전 측정용 3D printed chip 설계 및 흡연의 영향 사전 연구)

  • Haebeen Kim;Eunseop Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.74-79
    • /
    • 2023
  • Thrombogenesis, which is the process of blood clot formation, can be initiated by platelet activation. Excessive formation of blood clot in the bloodstream can lead to thrombosis. Therefore, when dealing with patients with disseminated intravascular coagulation (DIC) or children, it is necessary to use small amounts of blood. Hence, it is important to develop methods for the rapid and accurate measurement of the platelet function using a small amount of blood. In this study, 3D printing technology was utilized to facilitate the production of micro channels. The amount of platelet adhesion in smokers and non-smokers was compared by repeatedly exposing the structure of the channel to adjust the number of blood injections and facilitate thrombosis attachment to simple stenosis structures.

NUMERICAL ANALYSIS FOR THE EFFECT OF BLOOD FLOW RATE AND BIFURCATION ANGLE ON THE LOCATION OF ANTERIOR CIRCULATION ANEURYSM AND THE CHANGE OF BLOOD FLOW CHARACTERISTICS AFTER ANEURYSM FORMATION (전방순환동맥류 발생 위치에 대한 혈류량 및 분지각의 영향 및 동맥류 발생 전후의 유동 변화에 관한 수치해석 연구)

  • Kim, S.Y.;Ro, K.C.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.64-71
    • /
    • 2011
  • Cerebral aneurysm mostly occurs at a bifurcation of the circle of Willis. When the cerebral aneurysm is ruptured, a disease like subarachnoid hemorrhage and stroke is caused and this can be even deadly for patients. Generally it is known that causes of the intracranial aneurysm are a congenital deformity of the artery and pressure or shear stress from the blood flow. A blood flow pattern and the geometry of the blood vessel are important factors for the aneurysm formation. Research for several hemodynamic indices has been performed and these indices can be used for the prediction of aneurysm initiation and rupture. Therefore, the numerical analysis was performed for hemodynamic characteristics of the blood flow through the cerebral artery applying the various bifurcation angle and flow rate ratio. We analyze the flow characteristics using indices from the results of the numerical simulation. In addition, to investigate the flow pattern in the aneurysm according to the bifurcation angle and the flow rate ratio, we performed the numerical simulation on the supposition that the aneurysm occurs.