• Title/Summary/Keyword: Blood PCR

Search Result 773, Processing Time 0.05 seconds

Increased Free Circulating DNA Integrity Index as a Serum Biomarker in Patients with Colorectal Carcinoma

  • El-Gayar, Dina;El-Abd, Nevine;Hassan, Noha;Ali, Reem
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.939-944
    • /
    • 2016
  • Background: Cell-free DNA circulating in blood is a candidate biomarker for malignant tumors. Unlike uniformly truncated DNA released from apoptotic non diseased cells, DNA released from necrotic cancer cells varies in size. Objectives: To measure the DNA integrity index in serum and the absolute DNA concentration to assess their clinical utility as potential serum biomarkers for colorectal carcinoma (CRC) compared to CEA and CA19-9. Materials and Methods: Fifty patients with CRC, 10 with benign colonic polyps and 20 healthy sex and age matched volunteers, were investigated by real time PCR of ALU repeats (ALU q-PCR) using two sets of primers (115 and 247 bp) amplifying different lengths of DNA fragments. The DNA integrity index was calculated as the ratio of q-PCR results of ALU 247/ALU 115bp. Results: Serum DNA integrity was statistically significantly higher in CRC patients compared to the benign and control groups (p<0.001). ROC curves for differentiating CRC patients from normal controls and benign groups had areas under curves of 0.90 and 0.85 respectively. Conclusions: The DNA integrity index is superior to the absolute DNA concentration as a potential serum biomarker for screening and diagnosis of CRC. It may also serve as an indicator for monitoring the progression of CRC patients. Combining CEA and CA19-9 with either of the genetic markers studied is better than either of them alone.

High-Speed RNA Isolation Using Magnetic Oligo(dT) Beads and Lateral Magnetophoresis (올리고-dT 자성입자와 측면방향 자기영동을 이용한 초고속 RNA 추출 기술)

  • Lee, Hwan-Yong;Han, Song-I;Han, Ki-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1309-1316
    • /
    • 2011
  • This paper presents a high-speed RNA microextractor for the direct isolation of RNA from blood lysate using magnetic oligo(dT) beads. The extraction is performed through lateral magnetophoresis, which is induced by a ferromagnetic wire array inlaid. With this RNA microextractor, more than 80% of the magnetic beads could be separated at a flow rate up to 20 ml/h, and the overall extraction procedure was completed within 1 min. The absorbance ratio of RNA to protein(A260/A280) was greater than 1.7, indicating that the extraction technique yields pure RNA. The feasibility of using this technique in reverse transcription polymerase chain reaction procedures was investigated by cDNA synthesis and PCR processes. The results confirmed that the RNA microextractor is a practical device for easy, fast, and high-precision RT-PCR using minimal amounts of reagent.

Quantitative analysis of myxosporean parasites (Enteromyxum leei and Parvicapsula anisocaudata) detected from emaciated olive flounder (Paralichthys olivaceus) and rearing water (여윔증상 넙치 및 사육수 내 검출된 점액포자충(Enteromyxum leei and Parvicapsula anisocaudata)의 정량적 분석)

  • Lee, Young Juhn;Jun, Lyu Jin;Kim, Ye Ji;Han, Ji Eun;Lee, Eung Jun;Jeong, Joon Bum
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.161-168
    • /
    • 2021
  • Quantitative analysis of myxosporean parasites (Enteromyxum leei and Parvicapsula anisocaudata) were performed using real-time PCR on the internal organs (head kidney, body kidney, intestine, spleen, brain, liver, heart, muscle, blood, and eye) of emaciated Paralichthys olivaceus from farm-A. The highest DNA copy number of E. leei was shown in the intestine (1.3 × 108 copies/mg tissue) of emaciatied P. olivaceus and DNA copy number in the other internal organs (1.3 × 103~4.6 × 105 copies/mg tissue) showed lower than in intestine. From the result of real-time PCR for P. anisocaudata, it was considered mildly infected, due to the low DNA copy numbers of the head kidney (1.3 × 103 copies/mg tissue) and body kidney (9.1 × 103 copies/mg tissue). In order to investigate whether myxosporean parasites can be detected in a non-invasive way, quantitative analysis of E. leei and P. anisocaudata from rearing water of three farms were performed by real-time PCR. The DNA copy number of E. leei from rearing water of farm-A and farm-B were 8 × 104 and 5 × 105 copies/L, respectively. However, it was not detected in farm-C. For P. anisocaudata from rearing water, farm-A, farm-B and farm-C showed 0, 2.0 × 106 and 5.1 × 106 copies/L, respectively.

Development of Nucleic Acid Lateral Flow Immunoassay for Rapid and Accurate Detection of Chikungunya Virus in Indonesia

  • Ajie, Mandala;Pascapurnama, Dyshelly Nurkartika;Prodjosoewojo, Susantina;Kusumawardani, Shinta;Djauhari, Hofiya;Handali, Sukwan;Alisjahbana, Bachti;Chaidir, Lidya
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1716-1721
    • /
    • 2021
  • Chikungunya fever is an arboviral disease caused by the Chikungunya virus (CHIKV). The disease has similar clinical manifestations with other acute febrile illnesses which complicates differential diagnosis in low-resource settings. We aimed to develop a rapid test for CHIKV detection based on the nucleic acid lateral flow immunoassay technology. The system consists of a primer set that recognizes the E1 region of the CHIKV genome and test strips in an enclosed cassette which are used to detect amplicons labeled with FITC/biotin. Amplification of the viral genome was done using open-source PCR, a low-cost open-source thermal cycler. Assay performance was evaluated using a panel of RNA isolated from patients' blood with confirmed CHIKV (n = 8) and dengue virus (n = 20) infection. The open-source PCR-NALFIA platform had a limit of detection of 10 RNA copies/ml. The assay had a sensitivity and specificity of 100% (95% CI: 67.56% - 100%) and 100% (95% CI: 83.89% - 100%), respectively, compared to reference standards of any positive virus culture on C6/36 cell lines and/or qRT-PCR. Further evaluation of its performance using a larger sample size may provide important data to extend its usefulness, especially its utilization in the peripheral healthcare facilities with scarce resources and outbreak situations.

Detection of Serum Hepatitis B Virus DNA According to HBV Markers in Chronic Hepatitis B Liver Disease (만성 B형 간질환에서 간염 B virus 표식자 발현에 따른 DNA의 검출)

  • Lee, Dong-Jun;Choi, Jin-Su;Kim, Joon-Hwan;Lee, Heon-Ju
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.155-167
    • /
    • 1997
  • The identification of serum HBV DNA is very important for the assessment of the disease activity in persistent infection, for the evaluation of the infectivity of an individuals blood. The dot blot, however, has limited sensitivity and sometimes inconsistent with other serological markers and clinical settings. Using the most important recent advance in molecular biology, the polymerase chain reaction(PCR), specific DNA sequences can be amplified more than a million-fold in a few hours and with this technique the detection of the extreme low level of DNA is possible. This study was to determine sensitivity of the PCR for the detection of serum HBV DNA in comparison with dot blot analysis and to investigate the serum HBV DNA status and clinical significance of PCR in patients with chronic HBsAg positive liver disease. The subjects of this study were 17 patients with asymptomatic HBsAg carriers(9 HBeAg positive patients, 8 anti-HBe positive patients), 91 chronic hepatitis B(50 HBeAg positive patients, 41 anti-HBe positive patients), 57 liver cirrhosis(21 HBeAg positive patients, 36 anti-HBe positive patients), 27 hepatocellular carcinoma(10 HBeAg positive patients, 17 anti-HBe positive patients). The results were summerized as following; The detection rates of HBV DNA by dot blot, PCR were 58.9%, 72.2% in HBeAg positive patients, 34.3%, 53.9% in anti-HBe positive patients. The detection rates of HBV DNA by PCR in HBeAg negative patients were 25.0% in asymptomatic HBsAg carriers, 61.0% in chronic hepatitis B, 52.8% in liver cirrhosis, 52.9% in hepatocellular carcinoma. The positive rate for HBV DNA is a significant difference between HBeAg positive and negative asymptomatic HBsAg carriers, but not significantly difference in other groups. In conclusions, this study confirmed that the PCR is much more sensitive than the dot blot analysis in detecting the HBV DNA in the sera of patients with chronic liver disease. The presence of HBV DNA in the serum was detected by PCR with higher sensitivity and it suggested that active viral replication is still going on in most patients with chronic HBsAg positive liver disease irrespective of HBeAg/anti-HBe status, and PCR may be used as a prognostic factor in asymptomatic HBsAg carriers.

  • PDF

Quantitative Real-Time PCR of Porcine Parvovirus as a Model Virus for Cleaning Validation of Chromatography during Manufacture of Plasma Derivatives (혈장분획제제 제조공정에서 크로마토그래피 세척 검증을 위한 모델바이러스로서의 Porcine Parvovirus 정량)

  • Kil Tae Gun;Kim Won Jung;Lee Dong Hyuk;Kang Yong;Sung Hark Mo;Yoo Si Hyung;Park Sue-Nie;Kim In Seop
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.216-224
    • /
    • 2005
  • Chromatography has now been used successfully to provide the requisite purity for human plasma-derived biop-harmaceuticals such as coagulation factors and immunoglobulins. Recently, increasing attention has been focused on establishing efficient cleaning procedures to prevent potential contamination by microorganisms as well as carry-over contamination from batch to batch. The purpose of present study was to develop a cleaning validation system for the assurance of virus removal and/or inactivation during chromatography process. In order to establish an assay system for the validation of virus clearance during chromatography cleaning process, a quantitative real-time PCR method for porcine parvovirus(PPV) was developed, since PPV, a model virus for human parvovirus B19, has a high resistance to a range of physico-chemical treatment. Specific primers for amplification of PPV DNA was selected, and PPV DNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be 1.5 $TCID_{50}/ml$. The established real-time PCR assay was successfully applied to the validation of PPV removal and cleaning during SP-Sepharose cation chromatography for thrombin purification and Q-Sepharose anion chromatography for factor VIII purification. The comparative results obtained by real-time PCR assay and infectivity titrations suggested that the real-time PCR assay could be a useful method for chromatography cleaning validation and that it could have an additive effect on the interpretation and evaluation of virus clearance during the virus removal process.

Detection of Tissue-specific Expression of Porcine Cytochrome P450 Aromatase Genes by Use of Denaturing High Performance Liquid Chromatography(DHPLC) Technique (DHPLC 기술을 이용한 돼지 Cytochrome P450 Aromatase 유전자의 조직 - 특이적 발현양상 관찰)

  • Chae, S.H.;Ghlmeray, A.K.;Hong, J.M.;Lee, E.J.;Chang, J.S.;Choi, I
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.315-324
    • /
    • 2004
  • Cytochrome P450 aromatase is the enzyme responsible for biosynthesis of female sex hormone(estrogen) and 19-nortestosterone(nandrolone), a unique steroid hormone endogenously synthesized in the pig. By use of RT-PCR coupled with DHPLC technique (WAVE analysis), expression pattern of isoforms of porcine cytochrome P450 aromatase gene was investigated. Relatively higher expression of aromatase mRNA was observed in testis than in ovary and this result accounted for the previous findings of higher blood estrogen level in male compared with female in this species. The result from the DHPLC demonstrated that PCR amplified DNA fragments of ovary and testis tissues. using unique PCR primers for all three types of aromatase genes, were different from those of type II and ill genes. Further nucleotide sequence analyses of the plasmid clones containing the PCR products revealed that nucleotide sequences of all clones were identical to type I aromatase gene(ovary type). Thus, the result from the present study indicates that the ovary and testis express the same type of aromatase gene. Therefore, the efficacy of DHPLC techniques used for this study helped us to analyze tissue-specific expression of isoform of genes containing the nucleotide sequences with high homology.

Evaluation of Galactomannan Enzyme Immunoassay and Quantitative Real-Time PCR for the Diagnosis of Invasive Pulmonary Aspergillosis in a Rat Model

  • Lin, Jian-Cong;Xing, Yan-Li;Xu, Wen-Ming;Li, Ming;Bo, Pang;Niu, Yuan-Yuan;Zhang, Chang-Ran
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1044-1050
    • /
    • 2014
  • Since there is no consensus about the most reliable assays to detect invasive aspergillosis from samples obtained by minimally invasive or noninvasive methods, we compared the efficacy of an enzyme-linked immunosorbent assay (ELISA) for galactomannan (GM) detection and quantitative real-time PCR assay (qRT-PCR) for the diagnosis of invasive pulmonary aspergillosis. Neutropenic, male Sprague-Dawley rats (specific pathogen free; 8 weeks old; weight, $200{\pm}20g$) were immunosuppressed with cyclophosphamide and infected with Aspergillus fumigatus intratracheally. Tissue and whole blood samples were harvested on days 1, 3, 5, and 7 post-infection and examined with GM ELISA and qRT-PCR. The A. fumigatus DNA detection sequence was detected in the following number of samples from 12 immunosuppressed, infected rats examined on the scheduled days: day 1 (0/12), day 3 (0/12), day 5 (6/12), and day 7 (8/12) post-infection. The sensitivity and specificity of the qRT-PCR assay was 29.2% and 100%, respectively. Receiver operating characteristic curve (ROC) analysis indicated a Ct (cycle threshold) cut-off value of 15.35, and the area under the curve (AUC) was 0.627. The GM assay detected antigen in sera obtained on day 1 (5/12), day 3 (9/12), day 5 (12/12), and day 7 (12/12) post-infection, and thus had a sensitivity of 79.2% and a specificity of 100%. The ROC of the GM assay indicated that the optimal Ct cut-off value was 1.40 (AUC, 0.919). The GM assay was more sensitive than the qRT-PCR assay in diagnosing invasive pulmonary aspergillosis in rats.

Differences by RAPD-PCR Analysis within and between Rockfish (Sebastes schlegeli) Populations from the Yellow Sea and the Southern Sea in Korea (황해 및 남해산 조피볼락 (Sebastes schlegeli) 개체군 사이의 RAPD-PCR 분석에 의한 차이)

  • Yoon, Jong-Man;Kim, Jong-feon
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.4
    • /
    • pp.359-369
    • /
    • 2001
  • Polymerase chain reaction (PCR) amplification of DNA as 30 different arbitrary primers and random amplified polymorphic DNAs (RAPD) analysis were performed on genomic DNA extracted from the blood of the marine rockfish (Sebastes schlegeli) from the Yellow Sea and the Southern Sea. The unique properties of the genomic DNA were used to investigate the features of the population dynamics and origins of the species. Out of 30 primers, seven generated 207 highly reproducible RAPD polymorphic products, producing approximately 2.7 polymorphic bands per primer. About 67.4% of total amplified products (307) were either polymorphic (207) to rockfish. The degree of similarity varied from 0.22 to 0.63 as calculated by bandsharing analysis. Also, the average level of bandsharing was 0.39$\pm$0.02 within the rockfish strains. The electrophoretic analysis of RAPD-PCR products showed the relatively high levels if variation between different individuals in rockfish from the Yellow Sea. However, the RAPD outlines obtained with DNA of different rockfish strains from the Yellow Sea and the Southern Sea in Korea were very similar. Also, a small number of polymorphic bands were identified. Even if further analyses or more rockfish populations are required, this result implies RAPD analysis reflects genetic differences between the geographical strains of the rockfish.

  • PDF

Affinity Apheresis for Treatment of Bacteremia Caused by Staphylococcus aureus and/or Methicillin-Resistant S. aureus (MRSA)

  • Mattsby-Baltzer, Inger;Bergstrom, Tomas;Mccrea, Keith;Ward, Robert;Msc, Lars Adolfsson;Larm, Olle
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.659-664
    • /
    • 2011
  • Staphylococcus aureus (SA) bacteremia is associated with high mortality, and often results in metastatic infections. The methicillin-resistant SA (MRSA) is an urgent health care issue, as nosocomial infections with these bacteria represent limited treatment alternatives. Samples of whole blood containing challenge inoculums of SA and MRSA strains were passed through columns packed with surfaceheparinized polyethylene beads. The bound bacteria were eluted and quantitatively determined by culturing and by real-time PCR. Significant amounts of both SA and MRSA adhered to the heparinized beads (more than 65% of inoculated bacteria). After rinsing with buffer at high ionic strength, viable bacteria or bacterial DNA were eluted from the columns, indicating that the binding was specific. The conclusions that can be made from these experiments are that, as earlier reported in the literature, the high affinity of SA to heparin is retained in whole blood, and MRSA in whole blood binds to heparin with similar or higher affinity than SA. It should be possible to lower the amount of SA and/or MRSA from the blood of infected patients to levels that could be taken care of by the immune system. In previous studies, we have shown that passing blood from septic patients over beads coated with end-point-attached, biologically active heparin is a useful technique for regulating the levels of heparinbinding cytokine. These findings in combination with the present findings indicate the possibility of creating an apheresis technology for treatment of sepsis caused by SA and/or MRSA.