DOI QR코드

DOI QR Code

Affinity Apheresis for Treatment of Bacteremia Caused by Staphylococcus aureus and/or Methicillin-Resistant S. aureus (MRSA)

  • Received : 2011.02.14
  • Accepted : 2011.03.21
  • Published : 2011.06.28

Abstract

Staphylococcus aureus (SA) bacteremia is associated with high mortality, and often results in metastatic infections. The methicillin-resistant SA (MRSA) is an urgent health care issue, as nosocomial infections with these bacteria represent limited treatment alternatives. Samples of whole blood containing challenge inoculums of SA and MRSA strains were passed through columns packed with surfaceheparinized polyethylene beads. The bound bacteria were eluted and quantitatively determined by culturing and by real-time PCR. Significant amounts of both SA and MRSA adhered to the heparinized beads (more than 65% of inoculated bacteria). After rinsing with buffer at high ionic strength, viable bacteria or bacterial DNA were eluted from the columns, indicating that the binding was specific. The conclusions that can be made from these experiments are that, as earlier reported in the literature, the high affinity of SA to heparin is retained in whole blood, and MRSA in whole blood binds to heparin with similar or higher affinity than SA. It should be possible to lower the amount of SA and/or MRSA from the blood of infected patients to levels that could be taken care of by the immune system. In previous studies, we have shown that passing blood from septic patients over beads coated with end-point-attached, biologically active heparin is a useful technique for regulating the levels of heparinbinding cytokine. These findings in combination with the present findings indicate the possibility of creating an apheresis technology for treatment of sepsis caused by SA and/or MRSA.

Keywords

References

  1. Axelsson, J., M. Ferreira, L. Adolfsson, K. McCrea, R. Ward, and O. Larm. 2010. Cytokines in blood from septic patients interact with surface-immobilized heparin. ASAIO J. 56: 48-51. https://doi.org/10.1097/MAT.0b013e3181c3fec8
  2. Brakstad, O. G., K. Aasbakk, and J. A. Maeland. 1992. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 30: 1654-1660.
  3. Brandtzaeg, P., A. Bjerre, R. Ovstebo, B. Brusletto, G. B. Joo, and P. Kierulf. 2001. Neisseria meningitidis lipopolysaccharides in human pathology. J. Endotoxin Res. 7: 401-420.
  4. Cai, B., E. A. Deitch, and L. Ulloa. 2010. Novel insights for systemic inflammation in sepsis and hemorrhage. Mediators Inflamm. 2010: 642462.
  5. Carleton, H. A., B. A. Diep, E. D. Charlebois, G. F. Sensabaugh, and F. Perdreau-Remington. 2004. Community-adapted methicillinresistant Staphylococcus aureus (MRSA): Population dynamics of an expanding community reservoir of MRSA. J. Infect. Dis. 190: 1730-1738. https://doi.org/10.1086/425019
  6. Cosgrove, S. E., G. Sakoulas, E. N. Perencevich, M. J. Schwaber, A. W. Karchmer, and Y. Carmeli. 2003. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: A meta-analysis. Clin. Infect. Dis. 36: 53-59. https://doi.org/10.1086/345476
  7. David, M. Z. and R. S. Daum. 2010. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 23: 616-687. https://doi.org/10.1128/CMR.00081-09
  8. Hackett, S. J., M. Guiver, J. Marsh, J. A. Sills, A. P. Thomson, E. B. Kaczmarski, and C. A. Hart. 2002. Meningococcal bacterial DNA load at presentation correlates with disease severity. Arch. Dis. Child. 86: 44-46. https://doi.org/10.1136/adc.86.1.44
  9. Hess, D. J., M. J. Henry-Stanley, S. L. Erlandsen, and C. L. Wells. 2006. Heparan sulfate proteoglycans mediate Staphylococcus aureus interactions with intestinal epithelium. Med. Microbiol. Immunol. 195: 133-141. https://doi.org/10.1007/s00430-005-0007-5
  10. Hsu, R. B. 2005. Risk factors for nosocomial infective endocarditis in patients with methicillin-resistant Staphylococcus aureus bacteremia. Infect. Control Hosp. Epidemiol. 26: 654-657. https://doi.org/10.1086/502597
  11. Jessen, M. E. 2006. Pro: Heparin-coated circuits should be used for cardiopulmonary bypass. Anesth. Analg. 103: 1365-1369. https://doi.org/10.1213/01.ane.0000242530.81421.cc
  12. Kollef, M. H. 2000. Inadequate antimicrobial treatment: An important determinant of outcome for hospitalized patients. Clin. Infect. Dis. 31 (Suppl 4): S131-S138.
  13. Lala, H. M., G. D. Mills, K. Barratt, J. Bonning, N. E. Manikkam, and D. Martin. 2007. Meningococcal disease deaths and the frequency of antibiotic administration delays. J. Infect. 54: 551-557. https://doi.org/10.1016/j.jinf.2006.10.050
  14. Larm, O., R. Larsson, and P. Olsson. 1983. A new non-thrombogenic surface prepared by selective covalent binding of heparin via a modified reducing terminal residue. Biomater. Med. Devices Artif. Organs 11: 161-173.
  15. Liang, O. D., F. Ascencio, L. A. Fransson, and T. Wadstrom. 1992. Binding of heparan sulfate to Staphylococcus aureus. Infect. Immun. 60: 899-906.
  16. Liang, O. D., F. Ascencio, R. Vazquezjuarez, and T. Wadstrom. 1993. Binding of collagen, fibronectin, lactoferrin, laminin, vitronectin and heparan-sulfate to Staphylococcus aureus strain- V8 at various growth phases and under nutrient stress conditions. Zentralbl. Bakteriol. Microbiol. Hyg. A 279: 180-190. https://doi.org/10.1016/S0934-8840(11)80396-8
  17. Lisboa, T., G. Waterer, and J. Rello. 2010. We should be measuring genomic bacterial load and virulence factors. Crit. Care Med. 38: S656-S662. https://doi.org/10.1097/CCM.0b013e3181f2453a
  18. Ljungh, A. and T. Wadstrom. 1995. Growth-conditions influence expression of cell-surface hydrophobicity of staphylococci and other wound-infection pathogens. Microbiol. Immunol. 39: 753- 757. https://doi.org/10.1111/j.1348-0421.1995.tb03267.x
  19. Lowy, F. D. 1998. Staphylococcus aureus infections. N Engl. J. Med. 339: 520-532. https://doi.org/10.1056/NEJM199808203390806
  20. Olofsson, S. and T. Bergstrom. 2005. Glycoconjugate glycans as viral receptors. Ann. Med. 37: 154-172. https://doi.org/10.1080/07853890510007340
  21. Ovstebo, R., P. Brandtzaeg, B. Brusletto, K. B. Haug, K. Lande, E. A. Hoiby, and P. Kierulf. 2004. Use of robotized DNA isolation and real-time PCR to quantify and identify close correlation between levels of Neisseria meningitidis DNA and lipopolysaccharides in plasma and cerebrospinal fluid from patients with systemic meningococcal disease. J. Clin. Microbiol. 42: 2980-2987. https://doi.org/10.1128/JCM.42.7.2980-2987.2004
  22. Payen, D., J. Mateo, J. M. Cavaillon, F. Fraisse, C. Floriot, and E. Vicaut. 2009. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: A randomized controlled trial. Crit. Care Med. 37: 803-810. https://doi.org/10.1097/CCM.0b013e3181962316
  23. Pertosa, G., G. Grandaliano, L. Gesualdo, and F. P. Schena. 2000. Clinical relevance of cytokine production in hemodialysis. Kidney Int. 76: S104-S111.
  24. Peters, R. P., M. A. van Agtmael, S. Gierveld, S. A. Danner, A. B. Groeneveld, C. M. Vandenbroucke-Grauls, and P. H. Savelkoul. 2007. Quantitative detection of Staphylococcus aureus and Enterococcus faecalis DNA in blood to diagnose bacteremia in patients in the intensive care unit. J. Clin. Microbiol. 45: 3641- 3646. https://doi.org/10.1128/JCM.01056-07
  25. Rello, J., T. Lisboa, M. Lujan, M. Gallego, C. Kee, I. Kay, D. Lopez, and G. W. Waterer. 2009. Severity of pneumococcal pneumonia associated with genomic bacterial load. Chest 136: 832-840. https://doi.org/10.1378/chest.09-0258
  26. Riesenfeld, J. and L. Roden. 1990. Quantitative analysis of Nsulfated, N-acetylated, and unsubstituted glucosamine amino groups in heparin and related polysaccharides. Anal. Biochem. 188: 383-389. https://doi.org/10.1016/0003-2697(90)90624-I
  27. Ronco, C., R. Bellomo, P. Homel, A. Brendolan, M. Dan, P. Piccinni, and G. La Greca. 2000. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: A prospective randomised trial. Lancet 356: 26-30. https://doi.org/10.1016/S0140-6736(00)02430-2
  28. Schefold, J. C., S. von Haehling, M. Corsepius, C. Pohle, P. Kruschke, H. Zuckermann, H. D. Volk, and P. Reinke. 2007. A novel selective extracorporeal intervention in sepsis: Immunoadsorption of endotoxin, interleukin 6, and complementactivating product 5a. Shock 28: 418-425. https://doi.org/10.1097/shk.0b013e31804f5921
  29. Segreti, J. 2005. Efficacy of current agents used in the treatment of Gram-positive infections and the consequences of resistance. Clin. Microbiol. Infect. 11 (Suppl 3): 29-35. https://doi.org/10.1111/j.1469-0691.2005.01139.x
  30. Tang, L. and J. W. Eaton. 1995. Inflammatory responses to biomaterials. Am. J. Clin. Pathol. 103: 466-471.
  31. Tetta, C., V. D'Intini, R. Bellomo, M. Bonello, V. Bordoni, Z. Ricci, and C. Ronco. 2003. Extracorporeal treatments in sepsis: Are there new perspectives? Clin. Nephrol. 60: 299-304.
  32. Wadstrom, T. and A. Ljungh. 1999. Glycosaminoglycan-binding microbial proteins in tissue adhesion and invasion: Key events in microbial pathogenicity. J. Med. Microbiol. 48: 223-233. https://doi.org/10.1099/00222615-48-3-223
  33. Valente, A. M., R. Jain, M. Scheurer, V. G. Fowler Jr., G. R. Corey, A. R. Bengur, S. Sanders, and J. S. Li. 2005. Frequency of infective endocarditis among infants and children with Staphylococcus aureus bacteremia. Pediatrics 115: e15-e19.
  34. van der Poll, T. and S. M. Opal. 2008. Host-pathogen interactions in sepsis. Lancet Infect. Dis. 8: 32-43. https://doi.org/10.1016/S1473-3099(07)70265-7
  35. van Haeften, R., S. Palladino, I. Kay, T. Keil, C. Heath, and G. W. Waterer. 2003. A quantitative LightCycler PCR to detect Streptococcus pneumoniae in blood and CSF. Diagn. Microbiol. Infect. Dis. 47: 407-414. https://doi.org/10.1016/S0732-8893(03)00129-9
  36. Venkataraman, R., S. Subramanian, and J. A. Kellum. 2003. Clinical review: Extracorporeal blood purification in severe sepsis. Crit. Care 7: 139-145. https://doi.org/10.1186/cc1889
  37. Wisplinghoff, H., T. Bischoff, S. M. Tallent, H. Seifert, R. P. Wenzel, and M. B. Edmond. 2004. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39: 309-317. https://doi.org/10.1086/421946

Cited by

  1. Immune Aspects of Sepsis and Hope for New Therapeutics vol.14, pp.5, 2011, https://doi.org/10.1007/s11908-012-0276-2
  2. Rapid separation of bacteria from blood—review and outlook vol.32, pp.4, 2016, https://doi.org/10.1002/btpr.2299
  3. A Novel Pathogen Capturing Device for Removal and Detection vol.7, pp.None, 2011, https://doi.org/10.1038/s41598-017-05854-4
  4. Heparin 2.0: A New Approach to the Infection Crisis vol.50, pp.1, 2021, https://doi.org/10.1159/000508647
  5. Heparin-based blood purification attenuates organ injury in baboons with Streptococcus pneumoniae pneumonia vol.321, pp.2, 2011, https://doi.org/10.1152/ajplung.00337.2020