• 제목/요약/키워드: Blocking electrode

검색결과 94건 처리시간 0.026초

고내압 특성을 위한 진성영역과 트렌치 구조를 갖는 베이스 저항 사이리스터 (A Novel Trench Electrode BRT with Intrinsic Region for High Blocking Voltage)

  • 강이구;성만영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.243-246
    • /
    • 2001
  • In this paper, we have proposed a novel trench electrode Base Resistance Thyristor(BRT) and trench electrode BRT with a intrinsic region. A new power BRTs have shown superior electrical characteristics including snab-back effict and forward blocking voltage more than the conventional BRT. Especially, the trench electrode BRT with intrinsic region has obtained high blocking voltage of 1600V. The blocking voltage of conventional BRT is about 400V at the same size. Because the breakdown mechanism of BRT is avalanch breakdown by impact ionization, the trench electrode BRT with intrinsic region has suppressed impact ionization, effectively. If we use this principle, we can develope super high voltage power devices and applicate to another power devices including IGBT, EST and etc.

  • PDF

고내압 특성을 위한 진성영역과 트렌치 구조를 갖는 베이스 저항 사이리스터 (A Novel Trench Electrode BRT with Intrinsic Region for High Blocking Voltage)

  • 강이구;성만영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.243-246
    • /
    • 2001
  • In this paper, we have proposed a novel trench electrode Base Resistance Thyristor(BRT) and trench electrode BRT with a intrinsic region. A new power BRTs have shown superior electrical characteristics including snab-back effect and forward blocking voltage more than the conventional BRT. Especially, the trench electrode BRT with intrinsic region has obtained high blocking voltage of 1600V. The blocking voltage of conventional BRT is about 400V at the same size. Because the breakdown mechanism of BRT is avalanch breakdown by impact ionization, the trench electrode BRT with intrinsic region has suppressed impact ionization, effectively. If we use this principle, we can develope super high voltage power devices and applicate to another power devices including IGBT, EST and etc.

  • PDF

고내압 특성을 위한 진성영역과 트렌치 구조를 갖는 베이스 저항 사이리스터 (A Novel Trench Electrode BRT with the Intrinsic Region for Superior Electrical Characteristics)

  • 강이구;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제15권3호
    • /
    • pp.201-207
    • /
    • 2002
  • In this paper, we haute proposed a novel trench electrode Base Resistance Thyristor(BRT) and trench electrode BRT with a intrinsic region. New power BRTs have shown superior electrical characteristics including the snab-back effect and the forward blocking voltage more than the conventional BRT. Especially, the trench electrode BRT with the intrinsic region has obtained high blocking voltage of 1600V. The blocking voltage of conventional BRT is about 400V at the same size. Because the breakdown mechanism of the BRT is the avalanch breakdown by impact ionization, the trench electrode BRT with intrinsic region has suppressed impact ionization, effectively. If we use this principle, we can develop a super high voltage power device and it applies to another power device including IGBT, EST and etc.

개선된 항복 특성을 갖는 수평형 트렌치 전극 파워 MOSFET (A Lateral Trench Electrode Power MOSFET with Improved Blocking Characteristics)

  • 김대종;김상식;성만영;강이구;이동희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.323-326
    • /
    • 2003
  • In this paper, a new small size Lateral Trench Electrode Power MOSFET is proposed. This new structure, called "LTEMOSFET"(Lateral Trench Electrode Power MOSFET), is based on the conventional MOSFET. The entire electrode of LTEMOSFET is placed in trench oxide. The forward blocking voltage of the proposed LTEMOSFET is improved by 1.6 times with that of the conventional MOSFET. The forward blocking voltage of LTEMOSFET is 250V. At the same size, a increase of the forward blocking voltage of about 1.6 times relative to the conventional MOSFET is observed by using TMA-MEDICI which is used for analyzing device characteristics. Because the electrodes of the proposed device are formed in trench oxide, the electric field in the device are crowded to trench oxide. We observed that the characteristics of the proposed device was improved by using TMA-MEDICI and that the fabrication of the proposed device is possible by using TMA-TSUPREM4.

  • PDF

GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성 (Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells)

  • 박재호;이경주;송상우;조슬기;문병무
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF

The Effect of a Sol-gel Formed TiO2 Blocking Layer on the Efficiency of Dye-sensitized Solar Cells

  • Cho, Tae-Yeon;Yoon, Soon-Gil;Sekhon, S.S.;Kang, Man-Gu;Han, Chi-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3629-3633
    • /
    • 2011
  • The effect of a dense $TiO_2$ blocking layer prepared using the sol-gel method on the performance of dye-sensitized solar cells was studied. The blocking layer formed directly on the working electrode, separated it from the electrolyte, and prevented the back transfer of electrons from the electrode to the electrolyte. The dyesensitized solar cells were prepared with a working electrode of fluorine-doped tin oxide glass coated with a blocking layer of dense $TiO_2$, a dye-attached mesoporous $TiO_2$ film, and a nano-gel electrolyte, and a counter electrode of Pt-deposited FTO glass. The gel processing conditions and heat treatment temperature for blocking layer formation affected the morphology and performance of the cells, and their optimal values were determined. The introduction of the blocking layer increased the conversion efficiency of the cell by 7.37% for the cell without a blocking layer to 8.55% for the cell with a dense $TiO_2$ blocking layer, under standard illumination conditions. The short-circuit current density ($J_{sc}$) and open-circuit voltage ($V_{oc}$) also were increased by the addition of a dense $TiO_2$ blocking layer.

A Novel Trench Electrode BRT with the Intrinsic Region for Power Electronics

  • Kang, Ey-Goo;Oh, Dae-Suk;Kim, Dae-Won;Kim, Dae-Jong;Sung, Man-Young
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1038-1041
    • /
    • 2002
  • In this paper, we have proposed a novel trench electrode Base Resistance Thyristor(BRT) and trench electrode BRT with a intrinsic region. A new power BRTs have shown superior electrical characteristics including snab-back effect and forward blocking voltage more than the conventional BRT Especially, the trench electrode BRT with intrinsic region has obtained high blocking voltage of 1600V. The blocking voltage of conventional BRT is about 400V at the same size. Because the breakdown mechanism of BRT is avalanch breakdown by impact ionization, the trench electrode BRT with intrinsic region has suppressed impact ionization, effectively. If we use this principle, we can develope super high voltage power device and applicate to another power device including IGBT, EST and etc,

  • PDF

수평형 파워 MOSFET에 있어서 트렌치 Isolation 적용에 의한 순방향 항복특성 개선을 위한 새로운 소자의 설계에 관한 연구 (The Study of Improving Forward Blocking Characteristics for Small Sized Lateral Trench Electrode Power MOSFET using Trench Isolation)

  • 김진호;김제윤;유장우;성만영;김기남
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.9-12
    • /
    • 2004
  • In this paper, a new small sized Lateral Trench Electrode Power MOS was proposed. This new structure, called LTEMOS(Lateral Trench Electrode Power MOS), was based on the conventional lateral power MOS. But the entire electrodes of LTEMOS were placed in trench oxide. The forward blocking voltage of the proposed LTEMOS was improved by 1.5 times with that of the conventional lateral power MOS. The forward blocking voltage of LTEMOS was about 240 V. At the same size, an improvement of the forward blocking voltage of about 1.5 times relative to the conventional MOS was observed by using ISE-TCAD which was used for analyzing device's electrical characteristics. Because all of the electrodes of the proposed device were formed in each trench oxide, the electric field was crowded to trench oxide and punch-through breakdown was occurred, lately.

  • PDF

스마트 파워 IC를 위한 트렌치 파워 MOSFET의 전기적 특성에 관한 연구 (A Lateral Trench Electrode Power MOSFET with Superior Electrical Characteristics for Smart Power IC Systems)

  • 성만영;김대종;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제17권1호
    • /
    • pp.27-30
    • /
    • 2004
  • In this paper, a new small size Lateral Trench Electrode Power MOSFET is proposed. This new structure, called "LTEMOSFET"(Lateral Trench Electrode Power MOSFET), is based on the conventional MOSFET. The entire electrode of LTEMOSFET is placed in trench oxide. The forward blocking voltage of the proposed LTEMOSFET is improved by 1.6 times with that of the conventional MOSFET. The forward blocking voltage of LTEMOSFET is 250V. At the same size, a increase of the forward blocking voltage of about 1.6 times relative to the conventional MOSFET is observed by using TMA-MEDICI which is used for analyzing device characteristics. Because the electrodes of the proposed device are formed in trench oxide, the electric field in the device are crowded to trench oxide. We observed that the characteristics of the proposed device was improved by using TMA-MEDICI and that the fabrication of the proposed device is possible by using TMA-TSUPREM4.

A Novel EST with Trench Electrode to Immunize Snab-back Effect and to Obtain High Blocking Voltage

  • Kang, Ey-Goo;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권3호
    • /
    • pp.33-37
    • /
    • 2001
  • A vertical trench electrode type EST has been proposed in this paper. The proposed device considerably improves snapback which leads to a lot of problems of device applications. In this paper, the vertical dual gate Emitter Switched Thyristor (EST) with trench electrode has been proposed for improving snab-back effect. It is observed that the forward blocking voltage of the proposed device is 745V. The conventional EST of the same size were no more than 633V. Because the proposed device was constructed of trench-type electrodes, the electric field moved toward trench-oxide layer, and the punch through breakdown of the proposed EST is occurred at latest.

  • PDF