DC sputter방식으로 제조된 Cu₂Se 박막의 전자빔 처리에 따른 특성 연구

*권 혁, 김 재웅, 정 승철, 김 동진, 박 인선, **정 채환

Study on electron beam treatment on Cu₂Se thin films by DC sputtering method

*Hyuk Kwon, ChaeWoong Kim, SeungChul Jung, DongJin Kim, InSun Park, **ChaeHwan Jeong

현재 태양전지시장에서 비중이 많은 실리콘 태양전지는 높은 효율에 비해 제조 단가가 비싸다는 단점을 가지고 있다. 이에 비해 칼코파라이트 구조의 $CuInSe_2$ (CIS)계 화합물은 직접 천이형 반도체로서 높은 광흡수 계수($1 \times 105cm - \acute{e}1$)와 밴드갭조절의 용이성 및 열적 안정성 등으로 인해 고효율 박막 태양전지용 광흡수층 재료로 많은 관심을 끌고 있다. CIS 계 물질에 속하는 $Cu(InGa)Se_2$ (CIGS) 태양전지의 경우 양산화에 sputtering 방식사용하고 Showa Shell에서는 대면적 CIGS 모듈 효율 13.4%를 달성한 바 있다. 현재 CIGS는 열처리하는 방법으로 selenization 공정을 사용하는데 이 공정은 유독한 H_2Se gas를 이용해야 한다는 점과 긴 시간 동안 열처리를 해야 하는 단점을 가지고 있다. 따라서 이러한 단점을 보완하기 위해 본 연구에 서는 전자빔을 사용하여 후속 공정을 실시하였다. 전자빔을 사용할 경우 낮은 온도에서 precursor를 처리하며 짧은 시간에 공정이 끝난다는 장점이 있다.

본 연구에서는 sodalime glass위에 조성비(Cu 60.87%Se 38.66%)인 Cu₂Se target(4.002"x0.123") 을 DC sputter를 이용하여 DC power를 50W,100W를 주고 Working pressure를 20,15,10,5,3,1mtorr로 조절하여 증착하였다.

전자빔의 세기 조건을 3Kv, Rf power 200W, Ar 7sccm로 전자빔 조사 시간을 1,2,3,4,5min으로 늘려가며 최적화 실험 하였고 최적화된 조건으로 Cu_2Se target에 조사 하였다.

박막의 특성평가는 전자빔 조사 전/후에 대해 XRD, SEM, XRF, Hall measurement, UV-VIS을 이용하여 분석평가를 하였다. 이 실험은 Cu_2Se 상이 자라는 특성과 표면 상태에 따라 CIGS 박막을 증착하였을 때 나타나는 효율 변화를 알아 보기위한 초기 공정 실험이다.

Key words: DC sputtering(DC 스퍼터링), single layer(단일박막), e-beam(전자빔), CIGS

E-mail: *hyugiii1@kitech.re.kr

GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성

*박 재호, 이 경주, 송 상우, 조 슬기, **문 병무

Sputtered ZTO as a blocking layer at conducting glass and TiO₂ Interfaces in Dye-Sensitized Solar Cells

*Jaeho Park, Kyungju Lee, Sangwoo Song, Seulki Jo, **Byungmoo Moon

Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, TiO_2 , dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte (Γ/I_3). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous TiO_2 layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

Key words: Dye-sensitized solar cell, Blocking layer, ZTO, DC magnetron sputtering

E-mail: *summit0902@korea.ac.kr, **byungmoo@korea.ac.kr