• Title/Summary/Keyword: Block transportation

Search Result 155, Processing Time 0.029 seconds

Transporter Scheduling Based on a Network Flow Model for Dynamic Block Transportation Environment (동적 블록수송환경을 위한 네트워크 흐름모형 기반의 트랜스포터 일정계획)

  • Lee, Woon-Seek;Lim, Won-Il;Koo, Pyung-Hoi
    • IE interfaces
    • /
    • v.22 no.1
    • /
    • pp.63-72
    • /
    • 2009
  • This paper considers a transporter scheduling problem under dynamic block transportation environment in shipbuilding. In dynamic situations, there exist the addition, cancellation or change of block transportation requirements, sudden breakdowns and maintenance of transporters. The transportation of the blocks in the shipyard has some distinct characteristics. Some blocks are available to be picked up at a specific time during the planning horizon while some other blocks need to be delivered before a specific time. These requirements cause two penalty times: 1) delay times incurred when a block is picked up after a required start time, and 2) tardy times incurred when a block shipment is completed after the required delivery time. The blocks are located at different areas in the shipyard and transported by transporters. The objective of this paper is to propose a heuristic algorithm based on a network flow model which minimize the weighted sum of empty transporter travel times, delay times, and tardy times. Also, a rolling-horizon scheduling method is proposed for dynamic block transportation environment. The performance of the proposed heuristic algorithms are evaluated through a simulation experiment.

Optimal Block Transportation Path Planning of Transporters considering the Damaged Path (운송 경로 손상을 고려한 트랜스포터의 최적 블록 운송 경로 계획)

  • Heo, Ye-Ji;Cha, Ju-Hwan;Cho, Doo-Yeoun;Song, Ha-Cheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.298-306
    • /
    • 2013
  • Nowadays, a transporter manager plans the schedule of the block transportation by considering the experience of the manager, the production process of the blocks and the priority of the block transportation in shipyard. The schedule planning of the block transportation should be rearranged for the reflection of the path blocking cases occurred by unexpected obstacles or delays in transportation. In this paper, the optimal block transportation path planning system is developed for rearranging the schedule of the block transportation by considering the damaged path. $A^*$ algorithm is applied to calculate the new shortest path between the departure and arrival of the blocks transported through the damaged path. In this algorithm, the first node of the damaged path is considered as the starting position of the new shortest path, and then the shortest path calculation is completed if the new shortest path is connected to the one of nodes in the original path. In addition, the data structure for the algorithm is designed. This optimal block transportation path planning system is applied to the Philippine Subic shipyard and the ability of the rapid path modification is verified.

Transporter Scheduling for Dynamic Block Transportation Environment (동적 블록수송환경을 위한 트랜스포터 일정계획)

  • Lee, Woon-Seek;Lim, Won-Il;Koo, Pyung-Hoi;Joo, Cheol-Min
    • IE interfaces
    • /
    • v.21 no.3
    • /
    • pp.274-282
    • /
    • 2008
  • This paper considers a transporter scheduling problem under dynamic block transportation environment in shipbuilding. In dynamic situations, there exist the addition or cancellation of block transportation requirements, sudden breakdowns and maintenance of transporters. The transportation of the blocks in the shipyard has some distinct characteristics. Some blocks are available to be picked up at a specific time during the planning horizon while some other blocks need to be delivered before a specific time. These requirements cause two penalty times : 1) delay times incurred when a block is picked up after a required start time, and 2) tardy times incurred when a block shipment is completed after the required delivery time. The blocks are located at different areas in the shipyard and transported by transporters. The objective of this paper is to propose heuristic algorithms which minimize the weighted sum of empty transporter travel times, delay times, and tardy times. Four heuristic algorithms for transporter scheduling are proposed and their performance is evaluated.

Optimal Block Transportation Scheduling Considering the Minimization of the Travel Distance without Overload of a Transporter (트랜스포터의 공주행(空走行) 최소화를 고려한 블록 운반 계획 최적화)

  • Yim, Sun-Bin;Roh, Myung-Il;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.646-655
    • /
    • 2008
  • A main issue about production management of shipyards is to efficiently manage the work in process and logistics. However, so far the management of a transporter for moving building blocks has not been efficiently performed. To solve the issues, optimal block transporting scheduling system is developed for minimizing of the travel distance without overload of a transporter. To implement the developed system, a hybrid optimization algorithm for an optimal block transportation scheduling is proposed by combining the genetic algorithm and the ant algorithm. Finally, to evaluate the applicability of the developed system, it is applied to a block transportation scheduling problem of shipyards. The result shows that the developed system can generate the optimal block transportation scheduling of a transporter which minimizes the travel distance without overload of the transporter.

Development of Optimal Planning System for Operating Transporters in Shipyard (조선소 트랜스포터 운영을 위한 최적 계획 시스템 개발)

  • Cha, Ju-Hwan;Cho, Doo-Yeoun;Ruy, Won-Sun;Hwang, Ho-Jin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • In this paper, an optimal planning system for operating transporters in shipyard is developed. The system is designed to utilize the geometries of shipyard, and manage the data of blocks and transporters directly. There are four major menus such as shipyard map management based on GIS, block transportation request, transporter management, and optimal transportation planning in the system. The geometries and properties of the shops, roads, and addresses are manipulated in the shipyard map management menu. The block transportation requests and the properties of transporters are managed in the block transportation request and transporter management menus, respectively. The optimum transportation is planned automatically for minimizing the unload times of the transporters, and the optimum transportation plans are confirmed and printed to the transporter drivers. The effectiveness of the system was verified through the application to a large-sized shipyard.

Influence Factors for the Safety Assessment on the GPE Blocks during On-shore Transportation (GPE 블록의 연안운송시 안전성 평가를 위한 영향인자)

  • Kim, Sung-Chang;Hong, Ki-Sup;Shin, Dae-Kyun;Yu, Byeong-Seok;Kim, Kwan-Hong;Suh, Yong-Seok;Paeck, Se-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.595-602
    • /
    • 2009
  • Great number of ships has been built by Korean Shipyards since early of 2,000 due to the expanding worldwide trade. Most of shipyards have enlarged the weight of erection block and many blocks have been assembled in block fabrication factories outside the shipyards to reduce the shipbuilding period. Especially, Giga blocks that exceed 2,000 tons are often assembled by the block fabrication factories outside the shipyard. Generally, the blocks are transported to building dock in shipyard by towing barges. Accident can be occurred during the sea transportation and it may bring about not only the delay of delivery but also a disaster on the ocean environments. Transportation condition of GPE (Grand Pre-Erection) block differs from the ocean going conditions of marine vessels. Special consideration should be included before transportation work in order to guarantee the safety of GPE blocks and barge carriers. In this paper, several examples, which have been investigated to set up the safety standard of transportation of the GPE blocks on coastal routes, are introduced. For the barge transportation on coastal sea route, the design criteria are discussed, considering the design wave, the acceleration induced by wave, structural strength, and the fixture condition of blocks.

Comparison of Optimal Path Algorithms and Implementation of Block Transporter Planning System (최적 경로 알고리즘들의 계산비용 비교 및 트랜스포터의 최적 블록 운송 계획 적용)

  • Moon, Jong-Heon;Ruy, Won-Sun;Cha, Ju-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.115-126
    • /
    • 2016
  • In the process of ship building, it is known that the maintenance of working period and saving cost are one of the important part during the logistics of blocks transportation. Precise operational planning inside the shipyard plays a big role for a smooth transportation of blocks. But many problems arise in the process of block transportation such as the inevitable road damage during the transportation of the blocks, unpredictable stockyard utilization of the road associated with a particular lot number, addition of unplanned blocks. Therefore, operational plan needs to be re-established frequently in real time for an efficient block management. In order to find the shortest path between lot numbers, there are several representative methods such as Floyd algorithm that has the characteristics of many-to-many mapping, Dijkstra algorithm that has the characteristic of one-to-many mapping, and the A* algorithm which has the one-to-one mapping, but many authors have published without the mutual comparisons of these algorithms. In this study, some appropriate comparison have been reviewed about the advantages and disadvantages of these algorithms in terms of precision and cost analysis of calculating the paths and planning system to operate the transporters. The flexible operating plan is proposed to handle a situation such as damaged path, changing process during block transportation. In addition, an operational algorithm of a vacant transporter is proposed to cover the shortest path in a minimum time considering the situation of transporter rotation for practical use.

Compression Behavior of Form Block Walls Corresponding to the Strength of Block and Grout Concrete

  • Seo, S.Y.;Jeon, S.M.;Kim, K.T.;Kuroki, M.;Kikuchi, K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.21-33
    • /
    • 2015
  • This study aimed to present a reinforced concrete block system that reduces the flange thickness of the existing form block used in new buildings and optimizes the web form, and can thus capable of being used in the seismic retrofit of new and existing buildings. By conducting a compression test and finite element analysis based on the block and grouted concrete strength, it attempted to determine the compression capacity of the form block that can be used in new construction and seismic retrofit. As a result, the comparison of the strength equation from Architectural Institute of Japan to the prism compression test showed that the mortar coefficient of 0.55 was suitable instead of 0.75 recommended in the equation. The stress-strain relation of the block was proposed as a bi-linear model based on the compression test result of the single form block. Using the proposed model, finite element analysis was conducted on the prism specimens, and it was shown that the proposed model predicted the compression behavior of the form block appropriately.

Analyzing Airport Network Characteristics Applied to the Structural Equivalence (구조적 등위성을 적용한 공항네트워크의 특성 분석)

  • Oh, Sung Yeoul;Park, Yonghwa
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.2
    • /
    • pp.162-169
    • /
    • 2014
  • This study dealt with the airport network applying the Structural Equivalence which has used in the field of social science network. It analyzed the size of aviation market and trade exchanges. The results between blocks through the Convergence of Iteration Correlation are as follows; Block 1 (major hub airport) and Block 5 (Australian and New Zealand airports) have a strong relationship between other blocks. Block 3 (CIS region) and Block 7 (Malaysia and Indonesia) have been indicated as relatively low degree. The structural equivalence analysis can be grouped as a small number of blocks with large and complex networks and also presented a significant result according to the nature of the relationship between aviation market and the level of trade exchanges.

Security Model Tracing User Activities using Private BlockChain in Cloud Environment (클라우드 환경에서 프라이빗 블록체인을 이용한 이상 행위 추적 보안 모델)

  • Kim, Young Soo;Kim, Young Chan;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.475-483
    • /
    • 2018
  • Most of logistics system has difficulties in transportation logistics tracking due to problems in real world such as discordance between logistics information and logistics flow. For the solution to these problems, through case study about corporation, suppliers that transport order items in shopping mall, we retain traceability of order items through accordance between logistics and information flow and derive transportation logistics tracking model. Through literature review, we selected permissioned public block chain model as reference model which is suitable for transportation logistics tracking model. We compared, analyzed and evaluated using centralized model and block chain as application model for transportation logistics tracking model. In this paper we proposed transportation logistics tracking model which integrated with logistics system in real world. It can be utilized for tracking and detection model and also as a tool for marketing.