• Title/Summary/Keyword: Block loading

Search Result 214, Processing Time 0.026 seconds

Static Performance of Reinforced Soil Segmental Retaining Wall (블록식 보강토 옹벽의 정적성능 평가)

  • Koh Tae-Hoon;Lee Sung-Hyuck;Lee Jin-Wook;Hwang Seon-Keun;Park Sung-Hyun;Lee Seung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.46-52
    • /
    • 2003
  • In this study, the full scale testing method of the geogrid-reiuorced soil Segmental Retaining Walll(SRW) under the simulated train loading were proposed in order to evaluate the applicability of reinforced soil SRW in railway embankment. The train loading was simulated by the design static wheel load and the impact coefficient due to the train passing velocity. This test was focused on the static performance of reinforced soil SRW in terms of the following measuring systems ; the horizontal earth pressure displacement acting on the facing block and the tensile strain along the geogrid. The data gathered from this full scale testing was compared with numerical analysis results by FLAC.

  • PDF

A Study on Simulation of Remarshalling Work in an Automated Container Terminal (자동화 컨테이너터미널의 이적작업에 관한 시뮬레이션 연구)

  • Lee Joo-Ho;Choi Yong-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.203-208
    • /
    • 2004
  • The objective of this study is to analyze the efficiency of marshalling work using ATC(automated transfer crane) for ACT(automated container terminal). It is important fact to assignment of containers, because the character of ACT which block layout is vertical for berth and there are four other works which are inbound, oubound, loading and unloading in one block. And then there is need which assignment of containers with remarshaling work using ATCs in one block. Therefore, we analyze the efficiency of remarshaling work using simulation and suggest the assignment methodology of containers in yard

  • PDF

Structural Analysis on the Heavy Duty Diesel Engine and Optimization for Bearing Cap (대형 디젤엔진의 구조응력해석 및 베어링 캡의 최적설계)

  • Lee, Jae-Ok;Lee, Young-Shin;Lee, Hyun-Seung;Kim, Jae-Hoon;Jun, Joon-Tak;Kim, Chul-Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.402-410
    • /
    • 2008
  • The heavy duty diesel engine must have a large output for maintaining excellent mobility. In this study, a three dimensional finite element model of a heavy-duty diesel engine was developed to conduct the stress analysis. The FE model of the heavy duty diesel engine main parts consisting with four half cylinder was selected. The heavy duty diesel engine parts includes with cylinder block, cylinder head, gasket, liner, bearing cap, bearing and bolts. The loading conditions of engine were pre-fit load, assembly load, and gas load. As the results of structural analysis, because the stress values of cylinder block and bearing cap did not exceed the basic design can be satisfied. But on the part which contacts with cylinder block and bearing cap the stress value exceeds the allowable strength of material. In order to decrease the stress at that part, it was optimized with parametric study.

Investigation on Ultimate Strength of STS304L Stainless Steel Welded Connection with Base Metal Fracture Using Finite Element Analysis

  • Lee, HooChang;Kim, TaeSoo;Hwang, BoKyung;Cho, TaeJun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1139-1152
    • /
    • 2018
  • Many studies on the application of stainless steels as structural materials in buildings and infra-structures have been performed thanks to superior characteristics of corrosion resistance, fire resistance and aesthetic appeal. Experimental investigation to estimate the ultimate strength and fracture mode of the fillet-welded connections of cold-formed austenitic stainless steel (STS304L) with better intergranular corrosion resistance than that of austenitic stainless steel, STS304 commonly used has carried out by authors. Specimens were fabricated to fail by base metal fracture not weld metal fracture with main variables of weld lengths according to loading direction. All specimens showed a block shear fracture mode. In this paper, finite element analysis model was developed to predict the ultimate behaviors of welded connection and its validity was verified through the comparison with test results. Since the block shear behavior of welded connection due to stress triaxiality and shear-lag effects is different from that of bolted connection, stress and strain distributions in the critical path of tensile and shear fracture section were investigated. Test and analysis strengths were compared with those by current design specifications such as AISC, EC3 and existing researcher's proposed equations. In addition, through parametric analysis with extended variables, the conditions of end distance and longitudinal weld length for block shear fracture and tensile fracture were suggested.

Analysis of loading capacity of Korean High-Speed Train by using MAS(Moving Autoblock System) method (MAS(Moving Autoblock System) 방법을 이용한 한국형 고속전철의 선로 효율 분석)

  • Jeong, P.G.;Lee, J.D.;Lee, J.H.;Cho, C.H.;Kim, K.H.;Kim, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1426-1428
    • /
    • 2000
  • A new block system - MAS (Moving Autoblock System) whose efficiency is higher than FAS(Fixed Autoblock System) in the loading capacity is required to accomodate the increasing transport volume. That MAS has higher efficiency has already been verified through various studies, especially in a line with different types of travelling trains. The efficiency of MAS for Korean high speed line with two different train model is analyzed by computer simulation. The results show that MAS is more efficient than FAS in the loading capacity.

  • PDF

Numerical Simulation of Interactions between Corrosion Pits on Stainless Steel under Loading Conditions

  • Wang, Haitao;Han, En-Hou
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.64-68
    • /
    • 2017
  • The interactions between corrosion pits on stainless steel under loading conditions are studied by using a cellular automata model coupled with finite element method at a mesoscopic scale. The cellular automata model focuses on a metal/film/electrolyte system, including anodic dissolution, passivation, diffusion of hydrogen ions and salt film hydrolysis. The Chopard block algorithm is used to improve the diffusion simulation efficiency. The finite element method is used to calculate the stress concentration on the pit surface during pit growth, and the effect of local stress and strain on anodic current is obtained by using the Gutman model, which is used as the boundary conditions of the cellular automata model. The transient current characteristics of the interactions between corrosion pits under different simulation factors including the breakdown of the passive film at the pit mouth and the diffusion of hydrogen ions are analyzed. The analysis of the pit stability product shows that the simulation results are close to the experimental conclusions.

Preparation and Characterization of Fe-Ni Nanocatalyst for AEM Electrolysis via Spontaneous Reduction Reaction in Dry Process (건식 공정에서 자발적 환원 반응에 의한 AEM 수전해용 Fe-Ni 나노 촉매 제조 및 특성)

  • JAEYOUNG LEE;HONGKI LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.2
    • /
    • pp.185-194
    • /
    • 2024
  • Fe-Ni nanocatalysts loaded on carbon black were prepared via spontaneous reduction reaction of iron (II) acetylacetonate and nickel (II) acetylacetonate in dry process. Their morphology and elemental analysis were characterized by scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analyzer. The loading weight of the nanocatalysts was measured by thermogravimetric analyze and the surface area was measured by BET analysis. TEM observation showed that Fe and Ni nanoparticles was well dispersed on the carbon black and their average particle size was 4.82 nm. The loading weight of Fe-Ni nanocatalysts on the carbon black was 6.83-7.32 wt%, and the value increased with increasing iron (II) acetylacetonate content. As the Fe-Ni loading weight increased, the specific surface area decreased significantly by more than 50%, because Fe-Ni nanoparticles block the micropores of carbon black. I-V characteristics showed that water electrolysis performance increased with increasing Ni nanocatalyst content.

Preparation and Characterization of PEG-PLA(PLGA) Micelles for Solubilization of Pioglitazone (Pioglitazone 가용화를 위한 PEG-PLA(PLGA) 고분자 미셀의 제조 및 특성분석)

  • Im, Jeong-Hyuk;Lee, Yong-Kyu;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • We synthesized PEG-PLA (or PLGA) amphiphilic di-block copolymers, which consist of PEG as biocompatible and hydrophilic block and PLA (or PLGA) as biodegradable and hydrophobic block, by ring opening polymerization of LA in the presence of methoxy PEG as a macroinitiator. The compositions and the molecular weights of the copolymers were controlled by changing the feed ratio of LA (and GA) to PEG initiator. The di-block copolymers could self-assemble in aqueous media to form micellar structure. A hydrophobic model drug, pioglitazone, was loaded into the polymer micelle using solid dispersion and dialysis methods, and the drug-loaded micelles were characterized by AFM, DLS and HPLC measurements. The drug loading capacity and in vitro release studies were performed and evaluated under various conditions. These results indicated that the amphiphilic di-block copolymers of PEG-PLA (or PLGA) could solubilize pioglitazone by solid dispersion method and the drug release was modulated according to micellar chemical compositions.

High-Speed Implementation to CHAM-64/128 Counter Mode with Round Key Pre-Load Technique (라운드 키 선행 로드를 통한 CHAM-64/128 카운터 모드 고속 구현)

  • Kwon, Hyeok-dong;Jang, Kyoung-bae;Park, Jae-hoon;Seo, Hwa-jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1217-1223
    • /
    • 2020
  • The Block cipher CHAM is lightweight block cipher for low-end processors, developed by National Security Research Institute from Korea. The mode of operation is necessity for efficient operation of block cipher, among them, the counter (CTR) mode has good efficiency because it is easy to implement and supporting parallel operation. In this paper, we propose the optimized implementation for block cipher CHAM-CTR. The proposed implementation can be skipped some rounds by pre-computation. Thus it has better calculating speed than existing CHAM. Also, this implementation pre-load some of round keys to registers, before entering round functions. It makes reduced 160cycles loading time for round key load. Finally, proposed implementation achieved higher performance about 6.8%, and 4.5% for fixed-key scenario, and variable-key scenario, respectively.

Behavior of lightweight aggregate concrete voided slabs

  • Adel A. Al-Azzawi;Ali O, AL-Khaleel
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.351-363
    • /
    • 2023
  • Reducing the self-weight of reinforced concrete structures problem is discussed in this paper by using two types of self-weight reduction, the first is by using lightweight coarse aggregate (crushed brick) and the second is by using styropor block. Experimental and Numerical studies are conducted on (LWAC) lightweight aggregate reinforced concrete slabs, having styropor blocks with various sizes of blocks and the ratio of shear span to the effective depth (a/d). The experimental part included testing eleven lightweight concrete one-way simply supported slabs, comprising three as reference slabs (solid slabs) and eight as styropor block slabs (SBS) with a total reduction in cross-sectional area of (43.3% and 49.7%) were considered. The holes were formed by placing styropor at the ineffective concrete zones in resisting the tensile stresses. The length, width, and thickness of specimen dimensions were 1.1 m, 0.6 m, and 0.12 m respectively, except one specimen had a depth of 85 mm (which has a cross-sectional area equal to styropor block slab with a weight reduction of 49.7%). Two shear spans to effective depth ratios (a/d) of (3.125) for load case (A) and (a/d) of (2) for load case (B), (two-line monotonic loads) are considered. The test results showed under loading cases A and B (using minimum shear reinforcement and the reduction in cross-sectional area of styropor block slab by 29.1%) caused an increase in strength capacity by 60.4% and 54.6 % compared to the lightweight reference slab. Also, the best percentage of reduction in cross-sectional area is found to be 49.7%. Numerically, the computer program named (ANSYS) was used to study the behavior of these reinforced concrete slabs by using the finite element method. The results show acceptable agreement with the experimental test results. The average difference between experimental and numerical results is found to be (11.06%) in ultimate strength and (5.33%) in ultimate deflection.