• 제목/요약/키워드: Bloch functions

검색결과 35건 처리시간 0.021초

HARMONIC LITTLE BLOCH FUNCTIONS ON THE UPPER HALF-SPACE

  • Yi, HeungSu
    • Korean Journal of Mathematics
    • /
    • 제5권2호
    • /
    • pp.127-134
    • /
    • 1997
  • On the setting of the upper half-space of the euclidean n-space, we study some properties of harmonic little Bloch functions and we show that for a given harmonic little Bloch function $u$, there exists unique harmonic conjugates of $u$, which are also little Bloch functions with appropriate norm bounds.

  • PDF

WEIGHTED BLOCH SPACES IN $C^n$

  • Kyong Taik Hahn;Ki Seong Choi
    • 대한수학회지
    • /
    • 제35권1호
    • /
    • pp.177-189
    • /
    • 1998
  • In this paper, weighted Bloch spaces $B_q (q > 0)$ are considered on the open unit ball in $C^n$. These spaces extend the notion of Bloch spaces to wider classes of holomorphic functions. It is proved that the functions in a weighted Bloch space admit certain integral representation. This representation formula is then used to determine the degree of growth of the functions in the space $B_q$. It is also proved that weighted Bloch space is a Banach space for each weight q > 0, and the little Bloch space $B_q,0$ associated with $B_q$ is a separable subspace of $B_q$ which is the closure of the polynomials for each $q \geq 1$.

  • PDF

BERGMAN SPACES, BLOCH SPACES AND INTEGRAL MEANS OF p-HARMONIC FUNCTIONS

  • Fu, Xi;Qiao, Jinjing
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.481-495
    • /
    • 2021
  • In this paper, we investigate the properties of Bergman spaces, Bloch spaces and integral means of p-harmonic functions on the unit ball in ℝn. Firstly, we offer some Lipschitz-type and double integral characterizations for Bergman space ��kγ. Secondly, we characterize Bloch space ��αω in terms of weighted Lipschitz conditions and BMO functions. Finally, a Hardy-Littlewood type theorem for integral means of p-harmonic functions is established.

On a weighted hardy-sobolev space functions (I)

  • Kwon, E.G.
    • 대한수학회논문집
    • /
    • 제11권2호
    • /
    • pp.349-357
    • /
    • 1996
  • Using a special property of Bloch functions with Hardmard gaps and using the geometric properties of the self maps of the unit disc, we give a way of constructing explicit examples of Bloch functions f whose derivative is in $H^p$ (0 < p < 1) but $f \notin BMOA$.

  • PDF

INTEGRAL REPRESENTATION OF SOME BLOCH TYPE FUNCTIONS IN ℂn

  • Choi, Ki Seong;Yang, Gye Tak
    • 충청수학회지
    • /
    • 제10권1호
    • /
    • pp.17-22
    • /
    • 1997
  • Let B be the open unit ball in the complex space $\mathbb{C}^n$. A holomorphic function $f:B{\rightarrow}C$ which satisfies sup{(1- ${\parallel}\;{\nabla}_zf\;{\parallel}\;{\mid}z{\in}B$} < $+{\infty}$ is called Bloch type function. In this paper, we will find some integral representation of Bloch type functions.

  • PDF

TOEPLITZ OPERATORS ON BLOCH-TYPE SPACES AND A GENERALIZATION OF BLOCH-TYPE SPACES

  • Kang, Si Ho
    • 충청수학회지
    • /
    • 제27권3호
    • /
    • pp.439-454
    • /
    • 2014
  • We deal with the boundedness of the n-th derivatives of Bloch-type functions and Toeplitz operators and give a relationship between Bloch-type spaces and ranges of Toeplitz operators. Also we prove that the vanishing property of ${\parallel}uk^{\alpha}_z{\parallel}_{s,{\alpha}}$ on the boundary of $\mathbb{D}$ implies the compactness of Toeplitz operators and introduce a generalization of Bloch-type spaces.

ON HYPERHOLOMORPHIC Fαω,G(p, q, s) SPACES OF QUATERNION VALUED FUNCTIONS

  • Kamal, Alaa;Yassen, Taha Ibrahim
    • Korean Journal of Mathematics
    • /
    • 제26권1호
    • /
    • pp.87-101
    • /
    • 2018
  • The purpose of this paper is to define a new class of hyperholomorphic functions spaces, which will be called $F^{\alpha}_{{\omega},G}$(p, q, s) type spaces. For this class, we characterize hyperholomorphic weighted ${\alpha}$-Bloch functions by functions belonging to $F^{\alpha}_{{\omega},G}$(p, q, s) spaces under some mild conditions. Moreover, we give some essential properties for the extended weighted little ${\alpha}$-Bloch spaces. Also, we give the characterization for the hyperholomorphic weighted Bloch space by the integral norms of $F^{\alpha}_{{\omega},G}$(p, q, s) spaces of hyperholomorphic functions. Finally, we will give the relation between the hyperholomorphic ${\mathcal{B}}^{\alpha}_{{\omega},0}$ type spaces and the hyperholomorphic valued-functions space $F^{\alpha}_{{\omega},G}$(p, q, s).