• Title/Summary/Keyword: Blended Combustion

Search Result 125, Processing Time 0.026 seconds

A Study on Combustion and Emission Characteristics of the Methanol Blended Fuel in SI Engine (SI엔진의 메탄올 혼합 연료의 연소 및 배출 가스 특성에 관한 연구)

  • 조행묵;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 2003
  • The engine performance and combustion characteristics of methanol blended fuel in a multiple-point electronic control gasoline engine were discussed on the basis of experimental investigation. The effects of methanol blending fuel on combustion in cylinder were investigated under various conditions of engine cycle and blending ratio. The results showed that the engine performance was influenced by the methanol blended ratio. The results showed that the engine performance was influenced by the methanol blending ratio and the variations of operating conditions of test engine. The increase of blended fuel brought on the improvement of emission characteristics such as THC, CO, and NOx concentration. The effect of methanol blended fuel on the fuel consumption rate and the other characteristics of performance were discussed.

A study on combustion of blended straight vegetable oil in marine diesel engine cylinders

  • Nguyen, Dai An;Tran, The Nam;Dang, Van Uy
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.813-820
    • /
    • 2015
  • Straight vegetable oil (SVO) is widely recommended as fuel for diesel engines in general and especially for marine diesel engines. However, SVOs used directly as fuel for diesel engines may cause problems for the engines; SVOs blended with diesel oil are a better choice. To widen understanding of the possibility of using blended SVOs as fuel alternatives, this paper presents results of experimental research on the combustion of blended straight vegetable oil in a marine diesel engine's cylinders. Results show that the fuel combustion process have the same curves as in simulations and, in the case of using blended fuels with up to 20% palm oil, the test diesel engine technical parameters such as engine output, exhaust gas temperatures, and specific fuel consumption are very similar to those of diesel oil (DO). Based on these results, marine diesel engines are strong potential applications and particularly recommended for the use of SVO blends.

Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Oxygenated Blending Fuel (압축착화 엔진에서 함산소 혼합연료의 연소 및 미세입자 배출물 특성)

  • Cha, June-Pyo;Yoon, Seung-Hyun;Chon, Moo-Soo;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.61-66
    • /
    • 2009
  • An experimental investigation was conducted to analyze the effects of biodiesel-ethanol and biodiesel-diesel blended fuels on the characteristics of combustion and exhaust emissions, and size distributions of particulate matter in a single cylinder diesel engine. The three types of test fuel were biodiesel and two blended fuels which were added ethanol and diesel by 20 % volume based fraction into biodiesel, respectively. In this study, the injection rate, combustion pressure, exhaust emissions and size distributions of particulate matter were measured under various injection timings and injection pressures. The experimental results show that biodiesel-ethanol blended fuel has lengthened ignition delay and low combustion pressure in comparison with those of biodiesel and biodiesel-diesel blended fuel even if all fuels indicated similar trends of injection rate under equal injection pressures. In addition, the ethanol blended fuel significantly reduced nitrogen oxidies (NOx) and soot emissions. And then the size distribution of particulate matters shows that blended fuels restrain the formation of particles which were beyond the range of 150nm comparison with biodiesel fuel.

A Study on the Spray and Combustion Characteristics of Diesel-ethanol-biodiesel Blended Fuels in a Diesel Engine (디젤엔진에서 디젤-에탄올-바이오디젤 혼합연료의 분무 및 연소 특성에 관한 연구)

  • Park, Su-Han;Youn, In-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.76-84
    • /
    • 2010
  • The aim of this study is to analyze the effect of the ethanol blending in diesel-ethanol blended fuels on the spray and combustion characteristics in a common-rail four-cylinder diesel engine. For the analysis of the spray characteristics, the spray images were obtained using a high speed camera with metal-halide lamps. From these spray images, the macroscopic spray characteristics such as the spray tip penetration and spray cone angle were investigated. Also, the combustion characteristics including the combustion pressure and the rate of heat release were studied with the analysis of the exhaust emissions in diesel-ethanol blended fuel driven diesel engine. It can be confirmed from the experiment on spray characteristics of diesel-ethanol blended fuels that the increased ethanol blending ratio induced the decrease of the spray tip penetration after the end of the injection. The spray cone angle slightly increased by the blending of ethanol fuel. In the experiment on atomization characteristics, the ethanol blending caused the improvement of the diesel atomization performance. On the other hand, at the same engine load condition, the increase of the ethanol blending ratio lead to lengthen the ignition delays, and to decrease the peak combustion pressure and the rate of heat release. Totally, the combustion and emission characteristics of ULSD and DE10 showed similar characteristics. However, in the case of DE20, CO and HC rapidly increased, and $NO_x$ decreased. It can be believed that 20% ethanol disturbed the combustion of diesel-ethanol blended fuel due to the low cetane number and evaporation.

A Study on the Ignition Delay of Fish Oil Using a Constant Volume Combustion Bomb (정용연소장치에 의한 어유의 착화지연에 관한 연구)

  • 서정주;왕우경;안수길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.50-58
    • /
    • 1993
  • The ignition delay of diesel oil and fish oil blended with diesel oils was investigated at various pressure and temperature conditions in a constant volume combustion bomb. The evaporation and combustion duration of diesel oil and fish oil blended with diesel oils were respectively different in high and low temperature. The dependence of ignition delay on the temperature was different in high and low temperature ranges which were divided at the 773K. The dependence of ignition delay on the pressure was almost linear, regardless of the test fuels at the constant temperature(863K). The ignition delay became longer as the blending rate of fish oil increased at the constant temperature and pressure, but it was especially short with 20% fish oil blended with diesel oils.

  • PDF

Combustion Characteristics of Blended Coals with Bituminous and Sub-bituminous in Oxy-fuel Combustion Conditions (순산소연소 조건에서 역청탄과 아역청탄 혼탄의 연소특성)

  • Sung, Yon-Mo;Moon, Cheor-Eon;Ahn, Seong-Yool;Kim, Seung-Il;Seo, Sang-Il;Kim, Tae-Hyung;Jeong, Ji-Hwan;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • This paper focuses on the combustion characteristics of blended coals with bituminous and sub-bituminous coals under air and oxy-fuel combustion conditions. The effects of oxygen concentration and blending ratio on the combustion characteristics were experimentally investigated using a thermogravimetric analyser (TGA). Characteristic temperatures including ignition, burnout temperature and activation energy were determined from TG and DTG combustion profiles. As oxygen concentration increased and the presence of sub-bituminous coal, characteristic temperatures and activation energy decreased. The ignitability, reactivity and kinetics have all been greatly improved under oxy-fuel combustion conditions. Based on this, co-firing with bituminous and sub-bituminous coals under oxy-fuel combustion conditions may be suggested as an alternative method to the fuel flexibility and cost-effective power production with carbon capture and sequestration.

An Investigation of the Fundamental Combustion Characteristics for the Utilization of LFG (LFG 활용을 위한 기초 연소특성 검토)

  • Lee, Chang-Eon;Oh, Chang-Bo;Kum, Sung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.99-108
    • /
    • 2004
  • Fundamental combustion characteristics, such as the combustion potential, burning velocity and flame stability, for the practical utilization of LFG(Landfill gas) and LFG-blended fuels were experimentally investigated. The combustion potentials(CP) of LFG-blended fuels calculated from the previously suggested formulae were compared with burning velocities obtained by present experiments. The results showed that the previous formulae fur CP of LFG-blended fuels were not agreed with the experimental burning velocity, and these formulae should be revised. To provide an useful information needed to design the combustion devices, a triangular diagram was suggested for the maximum burning velocity of the mixture of CH$_4$, LPG and LFG. From the investigation of the burning velocity and the flame stability in a practical combustor, it was noted that the LFG-blended fuels, of which heating values or Wobbe indices were adjusted to that of natural gas, could be used as an alternative fuel of natural gas.

Characteristics of canola biodiesel fuel blended with diesel on the combustion and exhaust gas emissions in a compression ignition diesel engine (압축착화 디젤기관의 연소 및 배기가스에 대한 카롤라 바이오디젤 혼합 연료의 특성)

  • Yoon, Sam Ki;Kim, Min Soo;Choi, Nag Jung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1081-1086
    • /
    • 2014
  • An experimental study was performed in order to compare with the case of using pure diesel the characteristics of combustion pressure and exhaust emissions when the engine speed was changed in a CRDI 4-cylinder diesel engine using biodiesel( Canola oil) blended and pure diesel fuel. As a results, the combustion pressure was decreased with increasing biodiesel blended rate when engine speed was 1,000, 1,500, 2000(rpm). but the combustion pressure of the engine speed 2,500rpm was increased with increasing biodiesel blended rate. The emission results show, that CO was decreased with increasing biodiesel blended rate and engine speed. The emission of $CO_2$, NOx, were increased with increasing biodiesel blended rate and engine speed.

A Study on the Characteristics of Spray and Engine Combustion of Diesel-DME Blended Fuel (Diesel-DME 혼합연료의 분무 및 엔진 연소특성에 관한 연구)

  • Yang, Ji Woong;Jung, Jae Hoon;Lim, Ock Taeck
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • The purpose of this study was compared the spray, combustion and emissions (NOx, CO, HC, smoke) characteristics of a typical fuel (100% Diesel, DME) and Diesel-DME blended fuel in a Constant Volume Chamber (CVC) and a single-cylinder DI diesel engine. Spray characteristics were investigated under various ambient and fuel injection pressures when the Diesel-DME blended ratio is varied. The parameters of spray sturdy were spray shape, penetration length, and spray angle. Common types of injectors having seven holes and made by Bosch were used. As of use, the typical fuel (100% Diesel, DME) and the blended fuel by mixture ratio 95:5, 90:10 (Diesel:DME) were used. The Injection pressure was fixed by 70.1MPa, when the ambient Pressure was varied 0.1, 2.6 and 5.1 MPa. The combustion experiments was conducted with single cylinder engine equipped with common rail injection system. injection pressure is 70 MPa. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions.

Effect of methanol-blended fuel properties on the combustion characteristics of a gasoline engine (메탄올 혼합연료가 기관 연소 특성에 미치는 영향)

  • Jo, Haeng-Muk;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3381-3386
    • /
    • 1996
  • The engine performance and combustion characteristics of methanol blended fuel in spark ignition engine were discussed on the basis of experimental investigation. The effects of methanol blending fuel on combustion in cylinder were investigated under various conditions of engine cycle and blending ratio. The results showed that the engine performance was influenced by the methanol blending ratio and the variations of operating conditions of test engine. The increase of fuel temperature brought on the improvement of combustion characteristics such as cylinder pressure, the rate of pressure rise and heat release in an engine. The burning rate of fuel-air mixture, the exhaust emissions and the other characteristics of performance were discussed also.