• Title/Summary/Keyword: Blast source

Search Result 100, Processing Time 0.021 seconds

Epidemiological Studies of Blast Disease of Rice Plant II. Significance of Differential Distribution of Leaf Lesions at Different Location of Each Tiller as an Inoculum Source of Panicle Blast (수도 도열병의 역학적 연구 II. 이삭 도열병 전염원으로서의 엽위별 병반분포의 의의)

  • Park J.S.;Yu S.H.;Kim H.G.
    • Korean journal of applied entomology
    • /
    • v.22 no.4 s.57
    • /
    • pp.277-282
    • /
    • 1983
  • Number and percentage of diseased area of leaf blast lesions formed on different leaf location were mostly distributed from the flag leaf(n-1) to the 3rd leaf from the top(n-3) in Tongil line rice varieties and on the 2nd leaf from the top(n-2) in Japonica type rice varieties. Especially leaf lesions of Nopung which was more susceptible to leaf blast among Ton1 line rice varieties were mostly distributed on flag leaf. Relation between the degree of lesion distribution and level of fertilizer was more clear with an increase of fertilizer quantity. Leaf blast lesions of rice varieties were generally distributed from the flag leaf to the with leaf from the top but mainly those at flag leaf and the 2nd leaf from the top were found to be most responsible for inoculum source of panicle blast after booting stage. Increase of the conidia formation was resulted from fluctuation of temperature$(24^{\circ}C\~16^{\circ}C)$ in low temperature range after booting stage and many inoculum sources were supplied on panicles until the end of September without impeding dispersal from leaf blast lesions as an inoculum source of panicle blast.

  • PDF

Properties of Extruding Cement Panel Using Ca-extracted Slag as Silicious Source (Ca 추출 슬래그를 실리카 원료로 사용한 압출성형시멘트 패널의 특성)

  • Choi, Hong-Beom;Kim, Jin-Man;Yu, Jae-Seong;Hyun, Ji-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.117-118
    • /
    • 2016
  • This paper evalutes properties of extruding cement panel using Ca-extracted convert slag and air-cooled blast furnace slag. Flexural strength of extruding cement panel has measured in air dry and autoclave curing as basic study for use as silicious source. As a result, when Ca-extracted converter slag replaces 25% in autoclave curing, flexural strength measures 13.1MPa better than panel control mix. In result of using air-cooled blast furnace slag, Ca-extracted air-cooled blast furnace slag dose not show increase of flexural strength.

  • PDF

A Study on the Numerical Modelling of Blast Source (발파원 모델링을 위한 수치해석적 고찰)

  • 백승규;류창하
    • Explosives and Blasting
    • /
    • v.21 no.4
    • /
    • pp.37-42
    • /
    • 2003
  • The source of rock breakage by explosive blasting is the energy released from an explosive. It is transmitted to the surrounding rock mass causing various types of fracture of rock material. The reaction of explosives and the resulting action on the surrounding rock mass are completed in very short tine, making it almost impossible to observe the processes occurring in the interior of the rock mass. In this study several input parameters are investigated by numerical modelling of blast source and dynamic response of rock mass. It is shown that damping coefficient and rising time are major parameters affecting dynamics response of rock mass.

Study on the Indoor Acoustic Field Analysis using the Blast Wave Model (폭발파 모델을 이용한 실내 음장 해석에 관한 연구)

  • Song, Kee-Hyeok;Kang, Woo-Ram;Lee, Duck-Joo;Kim, Young-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.142-150
    • /
    • 2015
  • A portable recoilless guided missile generates a strong back blast and impulsive noise at the nozzle when it launches. In the case of indoor operations, the hazard of the blast noise from a recoilless weapon increases due to limited indoor spaces. Also, the noise levels determine the operational feasibility of a weapon; therefore, it is important to predict the blast noise levels distribution in the indoor space in advance. In addition, computational fluid dynamics (CFD) method generally used for fluid related simulations, requires high computing cost and time to simulate the whole domains. The domain includes both blast wave region and large and various indoor space region. Therefore, an efficient method for predicting the far-field noise level within a short time should be developed. This paper describes an analysis model for predicting the indoor noise distributions by considering the shape effect of the building within a short time. A new developed blast wave model was implemented using the noise source. Additionally, noise reflections at the closed surfaces such as walls and noise transmissions at the opened surfaces such as windows and doors were considered in calculating the noise levels. The predicted noise levels were compared with the experimental data obtained from the indoor launch test to validate the reliability of program.

On the Improvement of the Combustibility of Waste Plastics used in Blast Furnace

  • Ban, Bong-Chan;Choi, Jin-Shik;Kim, Dong-Su
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.751-754
    • /
    • 2001
  • A possibility of using waste plastics as a source of secondary fuel in blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. for instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with the decrease of particle size, the combustibility of waste PE could be improved at a given distance from tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at longer distance from tuyere.

  • PDF

Direct blast detection algorithm for asynchronous bistatic sonar systems (비동기 양상태 소나 시스템을 위한 직접파 탐지 기법)

  • Jeong, Euicheol;Ahn, Jae-Kyun;Kim, Juho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.3
    • /
    • pp.139-146
    • /
    • 2018
  • Monostatic sonar systems localize targets using the time information of pulse transmission and receipt. Whereas, in asynchronous bistatic sonar systems, receivers need to detect direct blast to localize targets, since a source doesn't share pulse information with receivers. In this paper, we propose a direct blast detection algorithm, which estimates PRI (Pulse Repetition Interval) of direct blast and adaptive thresholds. Experimental results show the proposed algorithm has robust direct blast detection performance in the environment where strong background noise and target signal exist.

Propagation characteristics of blast-induced vibration to fractured zone (파쇄영역에 따른 발파진동 전파특성)

  • Ahn, Jae-Kwang;Park, Duhee;Park, Ki-Chun;Yoon, Ji Nam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.959-972
    • /
    • 2017
  • In evaluation of blast-induced vibration, peak particle velocity (PPV) is generally calculated by using attenuation relation curve. Calculated velocity is compared with the value in legal requirements or the standards to determine the stability. Attenuation relation curve varies depending on frequency of test blasting, geological structure of the site and blasting condition, so it is difficult to predict accurately using such an equation. Since PPV is response value from the ground, direct evaluation of the structure is impractical. Because of such a limit, engineers tend to use the commercial numerical analysis program in evaluating the stability of the structure more accurately. However, when simulate the explosion process using existing numerical analysis program, it's never easy to accurately simulate the complex conditions (fracture, crushing, cracks and plastic deformation) around blasting hole. For simulating such a process, the range for modelling will be limited due to the maximum node count and it requires extended calculation time as well. Thus, this study is intended to simulate the elastic energy after fractured zone only, instead of simulating the complex conditions of the rock that results from the blast, and the analysis of response characteristics of the velocity depending on shape and size of the fractured zone was conducted. As a result, difference in velocity and attenuation character were calculated depending on fractured zone around the blast source appeared. Propagation of vibration tended to spread spherically as it is distanced farther from the blast source.

Improvement of Charge Strength Guideline for Multi-Energy Method by Comparing Vapor Cloud Explosion Cases (증기운 폭발 사례 비교를 통한 멀티에너지법의 폭발강도계수 지침 개선)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.355-362
    • /
    • 2021
  • Various blast pressure calculation methods have been developed for predicting the explosion pressure of vapor cloud explosions. Empirical methods include the TNT equivalent method, and multi-energy method. The multi-energy method uses a charge strength that considers environmental factors. Although the Kinsella guideline was provided to determine the charge strength, there are limitations such as guidelines related to ignition sources. In this study, we proposed an improved charge strength guideline, by subdividing the ignition source intensity and expanding the type classification through literature analysis. To verify the improved charge strength guideline, and to compare it with the result obtained using the Kinsella guideline, four vapor cloud explosion cases which could be used to estimate the actual blast pressure were investigated. As a result, it was confirmed that the Kinsella guidelines showed an inaccurate, that is, wider pressure than the actual estimated blast pressure. However, the improved charge strength guideline enabled the selection of the intensity of the ignition source, and more subdivided types through the expansion of classification, hence it was possible to calculate the blast pressure relatively close to that of the actual case.

Investigation on the Flow Field Characteristics of a Highly Underexpanded Pulsed Plasma Jet

  • Kim, Jong-Uk;Kim, Youn J.
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1691-1698
    • /
    • 2001
  • In recent years, significant progress has been made in modeling turbulence behavior in plasma and its effect on transport. It has also been made in diagnostics for turbulence measurement; however, there is still a large gap between theoretical model and experimental measurements. Visualization of turbulence can improve the connection to theory and validation of the theoretical model. One method to visualize the flow structures in plasma is a laser Schlieren imaging technique. We have recently applied this technique and investigated the characteristics of a highly underexpanded pulsed plasma jet originating from an electrothermal capillary source. Measurements include temporally resolved laser Schlieren imaging of a precursor blast wave. Analysis on the trajectory of the precursor blast wave shows that it does not follow the scaling expected for a strong shock resulting from the instantaneous deposition of energy at a point. However, the shock velocity does scale as the square root of the deposited energy, in accordance with the point deposition approximation.

  • PDF

Study on MPI-based parallel sequence similarity search in the LINUX cluster (클러스터 환경에서의 MPI 기반 병렬 서열 유사성 검색에 관한 연구)

  • Hong, Chang-Bum;Cha, Jeoung-Ho;Lee, Sung-Hoon;Shin, Seung-Woo;Park, Keun-Joon;Park, Keun-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.69-78
    • /
    • 2006
  • In the field of the bioinformatics, it plays an important role in predicting functional information or structure information to search similar sequence in biological DB. Biolrgical sequences have been increased dramatically since Human Genome Project. At this point, because the searching speed for the similar sequence is highly regarded as the important factor for predicting function or structure, the SMP(Sysmmetric Multi-Processors) computer or cluster is being used in order to improve the performance of searching time. As the method to improve the searching time of BLAST(Basic Local Alighment Search Tool) being used for the similarity sequence search, We suggest the nBLAST algorithm performing on the cluster environment in this paper. As the nBLAST uses the MPI(Message Passing Interface), the parallel library without modifying the existing BLAST source code, to distribute the query to each node and make it performed in parallel, it is possible to easily make BLAST parallel without complicated procedures such as the configuration. In addition, with the experiment performing the nBLAST in the 28 nodes of LINUX cluster, the enhanced performance according to the increase in the number of the nodes has been confirmed.

  • PDF