• Title/Summary/Keyword: Blast Slag Powder

Search Result 264, Processing Time 0.022 seconds

Quality Properties of Zero Cement Blast Furnace Slag Mortar Using the Recycled Fine Aggregates Depending on Mixing Factors (순환잔골재를 사용한 무 시멘트 고로슬래그 모르터의 배합요인에 따른 품질특성)

  • Han, Cheon-Goo;Son, Seok-Heon;Park, Kyung-Taek
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.70-77
    • /
    • 2010
  • This study is to investigate experimentally the influence of mixing factors, such as a mortar mix proportion of non-cement mortar, flow, and W/B, on quality characteristics of blast furnace slag powder mortar incorporating dry type recycled fine aggregates. In the characteristics of fresh mortar, the W/B increased according to the increase in the flow due to the increase in water contents, but air contents decreased due to loss of air contrary to the increase in the W/B. In the case of hardened mortar, the compressive strength showed a decrease due to the highly determined W/B inversely according to the increase in the flow through the entire age in which the compressive strength increased proportionally according to the increase in the B/W. Also, the increasing rate of such compressive strength increased more largely due to the latent hydraulic property of the BS according to the passage of the age. The flexural strength at the age of 28 days according to the increase in the B/W represented a similar level in strength values without any increases. The flexural strength for the compressive strength was distributed as a range of 1/2 ~ 1/3 and that showed a higher range than that of conventional concretes.

  • PDF

Compressive Strength Evaluation of Concrete with Mixed Plastic Waste Aggregates Filled with Blast Furnace Slag Fine Powder (무기충진재를 혼입한 복합 폐플라스틱 골재를 활용한 콘크리트 압축강도 특성)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2021
  • Plastic wastes generated from household waste are separated by mixed discharge with foreign substances, and recycling is relatively low. In this study, the effect of the ratio and content of mixed plastic waste coarse aggregate(MPWCA)s and mixed plastic waste fine aggregate(MPWFA)s filled with blast furnace slag fine powder on the slump and compressive strength of concrete was evaluated experimentally. The MPWCAs were found to have a similar fineness modulus, but have a single particle size distribution with a smaller particle size compared to coarse aggregates. However, the MPWFAs were found to have a single particle size distribution with a larger fineness modulus and particle size compared to fine aggregates. Meanwhile, the effect of improving the density and filling pores by the blast furnace slag fine power was found to be greater in the MPWFA compared to the MPWCA. As the amount of the mixed plastic waste aggregate(MPWA)s increased, the slump and compressive strength of concrete decreased. In particular, the lower the slump and compressive strength of concrete was found to decrease the greater the amount of MPWFA than MPWCA when the amount of MPWA was the same. This is because of the entrapped air and voids formed under the angular- and ROD-shaped aggregates among the MPWFAs. On the other hand, the addition of the admixture and the increase in the unit amount of cement were found to be effective in improving the compressive strength of the concrete with MPWAs.

Study on Optimum Mixture of Industrial By-Products for Lightweight Foamed Filler Production by Mixture Experimental Design (혼합물 실험계획법에 의한 경량기포 충전재 제조를 위한 산업부산물의 최적 배합 검토)

  • Woo, Yang-Yi;Park, Keun-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This research studied production of lightweight filling production for sink hole restoration utilizing various industrial by-products(2kinds of fly ash, petro-cokes CFBC ash, blast furnace slag fine particle). For this purpose, the mixed raw material properties(compressive strength) behaviors according to the blending ratio of industrial by-products were examined by applying the experimental design method and statistical analysis was performed using the commercial program MINITAB. Compressive strengths of industrial by-products were strongly dependent on blast furnace slag powder. Compressive strength(3days aging) was 3~11MPa depending on the amount of blast furnace slag powder used. The use of CFBC fly ash was evaluated to have the least effect on compressive strength. In addition, the compressive strength and the coefficient of permeability were measured by preparing foamed concrete for the experimental batch 1 condition in the mixture experimental design. In this case, the bulk density is 0.9 to 1.0, the apparent porosity is 30 to 50%, the compressive strength(3days old) is 1 to 2MPa, and the permeability coefficient is $10^{-2}$ to $10^{-3}cm/sec$.

Long-Term Leaching Characteristics of Arsenic Contaminated Soils Treated by the Stabilization Method (안정화 처리된 비소오염토양의 장기 용출특성)

  • Yu, Chan;Yun, Sung-Wook;Baek, Seung-Hwan;Park, Jin-Chul;Lee, Jung-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1463-1474
    • /
    • 2008
  • In order to investigate stabilization effect and sustainability on As-contaminated farmland soils which were affected the abandoned mine site and stabilized by zerovalent iron(ZVI) and industrial by-products, batch-scale and pilot-scale tests were carried out. In batch tests, ZVI and industrial by-products(blast furnace slag, steel refining slag and oyster shell powder) were used in treatment materials to reduce the As leaching. Industrial by-products were mixed with As-contaminated soils, in the ratio of 1%, 3%, 5% and 7% on the weight base of dried soil. The results of batch-scale tests was shown that the reduction of As concentration was observed in all samples and it was expected that ZVI and steel refining slag were more effective than other treatment materials to stabilize As compounds. In pilot-scale tests, columns were filled with untreated soils and treated soils mixed with ZVI and steel refining slag in the same mixing ratio of 3%. Distilled water was discharged into the columns with the velocity of 0.3 pore volume/day. During the test, pH, EC, Eh and As concentration were measured in the regular term(1pore volume). after six months, pilot-scale tests were retested to investigate sustainability of treatment materials. As a result, It was shown that the leachate from control column was continuously released during the test period and its concentration was greater than $100ug{\cdot}L^{-1}$ which was exceeded the national regulation of water discharged to river or stream ($50ug{\cdot}L^{-1}$). On the other hand, soil treated with ZVI and steel refining slag showed that the concentrations of leachate were lower than national regulation of water discharged to river or stream. Therefore it was expected that ZVI and steel refining slag could be applied to the farmland site as the alternative treatment materials.

  • PDF

Properties and Mock-up Test of Lightweight Foamed Concrete Based on Blast Furnace Slag by Crack Reducing Admixture (팽창성 균열저감제를 이용한 고로슬래그 미분말 기반 경량기포 콘크리트의 특성 및 목업실험)

  • Han, Sang-Yoon;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.507-515
    • /
    • 2017
  • This study is to develop a high quality lightweight foamed concrete that can be applied in the field using EXFG by cracking reducing agent combined with FGD and ALS. First, to increase the volume of foam, the flow and density of the mixture was increased and decreased, respectively. At this time, the effect of substitution ratio of EXFG on fluidity was negligible. The fraction of foam was the highest at EXFG 1%, and the settlement was found to be prevented by the expansion reaction at EXFG 1%. At this time, the ratio of foam was 65%. In the compressive strength, the strengths were similar or decreased when the substitution ratio of EXFG was more than 1%. The apparent density satisfied the KS 0.5 type at the bubble contents was 65%. In case of EXFG substitution, dry shrinkage was decreased by about 10%. As the substitution ratio of EXFG increased, the thermal conductivity increased proportionally.

Evaluation of Curing Conditions for Improving the Various Properties of Aerated Concrete Incorporating Slag Powder (슬래그 혼입 기포콘크리트의 성능향상을 위한 양생조건의 평가)

  • Park, Jong-Beom;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.527-532
    • /
    • 2018
  • The objective of the present study is to evaluate a practical approach for enhancing the compressive strength and minimizing deforming of aerated concrete. Test results measured in the aerated concrete mixes that were produced using 40% ground granulated blast-furnace slag (GGBS) as a replacement of cement and cured under different conditions (i.e., high temperatures of $40^{\circ}C$ and $60^{\circ}C$ for 10 hrs or 15 hrs) were compared with those obtained from the specimens cured under room temperature. No deforming was observed in the mixes with 40% GGBS. The compressive strength of the prepared aerated concrete cured under high temperature was higher than that of the concrete cured at room temperature, even at the lower ranges of the apparent dry density. However, the curing time is needed to be controlled as not exceeding 10 hrs at the temperature of $60^{\circ}C$ to prevent the decrease in the compressive strength due to foam mergences.

A Field Application of the Self-Compaction Concrete for Shrinkage Compensation (수축보상을 위한 자기충전 콘크리트의 현장적용)

  • Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.7-12
    • /
    • 2002
  • The purpose of this study is to design and to apply the self-compaction concrete mixture to field, having not only high strength but also compensation for shrinkage without thermal crack under 4 sides outer restraint of the member. In the experimental mix, replacement ratio of limestone Powder, CSA expansive additives, and unit water were selected as parameters, using portland blast-furnace slag cement. And, bleeding test, expansibility test, hydration heat analysis were performed. As a results, when Cement is replaced with 35% limestone Powder, 6% CSA expansive additives at unit water 175kg/$m^3$, demanded performances of fresh and hardened self-compaction concrete are accomplished in the field application.

  • PDF

An Experimental Study on Properties of Concrete using Industrial Wastes (산업부산물을 혼화재로 사용한 콘크리트의 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.6
    • /
    • pp.75-81
    • /
    • 1999
  • This study is performed to evaluate theproperties of concrete using industrial wastes such as fly ash, zeolite powder and blast furnace slag powder. Seven types of concrete mixtures are made in this study. Water0reducing admixture and air entaining agent are used for all mixtures. Test results, the hydration evolution amounts are decreased by 2 ∼31 % than that of the normal portland cement and air contents of concrete are decreased by 1 ∼15% and compressive strengths are increased by 2∼10% at the curing age 28 days than that of the normal portland cement concrete. Accordingly, concrete using industrial wastes will greatly improve the properties of concrete.

  • PDF

The Relationship between Rheology Properties and Particle size distribution in Cement paste (시멘트 페이스트에서 유동성과 입도분포와의 관계)

  • Hwang, Hae-Jeong;Lee, Seung-Heun;Lee, Won-Jun;Kim, Won-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.721-724
    • /
    • 2006
  • In this study, particle size distribution of cement powder system were adjusted using the blast furnace slag powder, Blaine $2250cm^2/g\;and\;8300cm^2/g$, which easy to adjust particle size distribution to examine how particle size distribution of the binder has an effect on rheological properties of the cement paste. In addition, the relationship between n-value of Rosin-Rammler function and plastic viscosity were discussed. All measured flow curves represented thixotropy behavior and the hysteresis area was smaller for the more added coarse particle. When the combination was based on a ratio of $20{\sim}25vol%$ fine particles, $30{\sim}40vol%$ OPC and $40{\sim}45vol%$ coarse particles of the total volume, a high fluidity and low yield strength was achieved.

  • PDF

A Study on the Mix Design of the Self-Compaction Concrete for the LNG Tank (LNG Tank용 자기충전 콘크리트의 배합설계에 관한 연구)

  • Kim, Dong-Seok;Park, Sang-Joon;Won, Cheol;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.135-138
    • /
    • 2003
  • The purpose of this study was to design the self-compaction concrete mixture, having not only high strength but also compensation of shrinkage without thermal crack under 4 sides outer restraint of the member. In the experimental mix, replacement ratio of limestone Powder, CSA expansive additives, and unit water were selected as parameters, using portland blast-furnace slag cement. And, bleeding test, expansibility test, hydration heat analysis were performed. As a results, when 35% of limestone Powder, 6% CSA expansive additives are replaced at unit water 175kg/$\textrm{m}^3$, demanded performances of fresh and hardened self-compaction concrete are accomplished.