• Title/Summary/Keyword: Blade force

Search Result 272, Processing Time 0.029 seconds

An Experimental Study on Evaluation of Gas Turbine Blade Integrity (가스터빈 블레이드의 건전성 평가를 위한 실험적 연구)

  • Cho, Cheul-Whan;Yang, Kyeong-Hyeon;Won, Jong-Bum;Kim, Sung-Hwi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.618-622
    • /
    • 2000
  • An experimental method is devised to identify the vibration characteristics of G/T blade in power plants. The acceptance margin to avoid resonance due to nozzle waking force is established and evaluated by suggested method. It is expected that improvement of turbine availability and the localization of blade can be achieved by using the result of this study.

  • PDF

Performance Comparison of Two Airfoil Rotor Designs for an Agricultural Unmanned Helicopter

  • Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: The most important element of an agricultural helicopter is the rotor blade realizing lift force. In order to improve the performance of the rotor blades, two types (KA152313 and KB203611) of airfoils were designed and compared. Methods: The nose shape of the KB203611 airfoil was 'drooped' and 'sharp' compared to the leading edge of the KA152313 airfoil. The performance of the experimental airfoils was simulated using CFD-ACE program, and lifts were measured in situ using the 'AgroHeli-4G', a prototype helicopter. Results: Simulated lifts of the blade with the KA152313 airfoil showed proper values for a wide range of angles of attack between $14^{\circ}{\sim}18^{\circ}$, while the simulated lift of the KB203611 blade exhibited maximum values near $13^{\circ}{\sim}14^{\circ}$. In the lift measurements, the range of operable angles of attack was a collective pitch angle at the grip (GP) of $12^{\circ}{\sim}18^{\circ}$ for the KA152313 blade. On the other hand, the range of angles of attack for the KB203611 blade was a GP of $12^{\circ}{\sim}14^{\circ}$. Conclusions: The blade of KA152313 performed well over a wide range of AoAs and the blade of KB203611 performed better at low AoAs. In this study, a variative airfoil blade, gradually emerging from grip to tip using the two different airfoils, was suggested.

Vibration-based identification of rotating blades using Rodrigues' rotation formula from a 3-D measurement

  • Loh, Chin-Hsiung;Huang, Yu-Ting;Hsiung, Wan-Ying;Yang, Yuan-Sen;Loh, Kenneth J.
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.677-691
    • /
    • 2015
  • In this study, the geometrical setup of a turbine blade is tracked. A research-scale rotating turbine blade system is setup with a single 3-axes accelerometer mounted on one of the blades. The turbine system is rotated by a controlled motor. The tilt and rolling angles of the rotating blade under operating conditions are determined from the response measurement of the single accelerometer. Data acquisition is achieved using a prototype wireless sensing system. First, the Rodrigues' rotation formula and an optimization algorithm are used to track the blade rolling angle and pitching angles of the turbine blade system. In addition, the blade flapwise natural frequency is identified by removing the rotation-related response induced by gravity and centrifuge force. To verify the result of calculations, a covariance-driven stochastic subspace identification method (SSI-COV) is applied to the vibration measurements of the blades to determine the system natural frequencies. It is thus proven that by using a single sensor and through a series of coordinate transformations and the Rodrigues' rotation formula, the geometrical setup of the blade can be tracked and the blade flapwise vibration frequency can be determined successfully.

Design for a circular arc shaped multi-blade windmill (원호형상의 멀티 블레이드를 가진 풍력터빈 설계)

  • Choo, Kwon Chul;Kim, Dong Keon;Yoon, Soon Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.390-395
    • /
    • 2004
  • The characteristics of the circular arc shaped multi-blade windmil are investigatedl. The prototypical windmill was tested in the laboratory at wind tunnel speeds of 5.5, 9.4m/s. and the model windmill was also tested in the laboratory, The power and torque coefficients were studied as functions of the blade section, the aspect ratio for blade diameter and windmill radius(M = 0.3, 0.5, 0.7), the number of blades and finally the tip-speed ratio. The analysis of the experimental results for the model windmill showed that there is the highest revolutions per minute(R.P.M) at the circular arc shaped multi-blade windmill having the blade number 10, aspect ratio(M = 0.7). and the results for the prototypical windmill showed that the power coefficient increased to a maximum value and then decreased again with an increase in the tip speed ratio, while the torque coefficient decreased directly with an increase in the tip speed ratio Finally, the experimental results were compared with the Savonius blade. the maximum power coefficient for the arc shaped blade was greater than for the Savonius blade and occured at a lower tip speed ratio.

  • PDF

Design and Structural Safety Evaluation of 1MW Class Tidal Current Turbine Blade applied Composite Materials (복합재료를 적용한 1MW급 조류 발전 터빈 블레이드의 설계와 구조 안전성 평가)

  • Haechang Jeong;Min-seon Choi;Changjo Yang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1222-1230
    • /
    • 2022
  • The rotor blade is an important component of a tidal stream turbine and is affected by a large thrust force and load due to the high density of seawater. Therefore, the performance must be secured through the geometrical and structural design of the blade and the blade structural safety to which the composite material is applied. In this study, a 1 MW class large turbine blade was designed using the blade element momentum (BEM) theory. GFRP is a fiber-reinforced plastic used for turbine blade materials. A sandwich structure was applied with CFRP to lay-up the blade cross-section. In addition, to evaluate structural safety according to flow variations, static load analysis within the linear elasticity range was performed using the fluid-structure interactive (FSI) method. Structural safety was evaluated by analyzing tip deflection, strain, and failure index of the blade due to bending moment. As a result, Model-B was able to reduce blade tip deflection and weight. In addition, safety could be secured by indicating that the failure index, inverse reserve factor (IRF), was 1 or less in all load ranges excluding 3.0*Vr of Model-A. In the future, structural safety will be evaluated by applying various failure theories and redesigning the laminated pattern as well as the change of blade material.

Analysis of the Dynamic Characteristics on Aerodynamic Loads of Wind Turbine Blade with New Airfoil KA2 (신규 익형 KA2가 적용된 풍력 블레이드의 공력 하중에 대한 동특성 해석)

  • Kang, Sang-Kyun;Lee, Ji-Hyun;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.63-70
    • /
    • 2015
  • This paper proposes a novel airfoil named "KA2" for the blade of the wind turbine systems. Dynamic loads characteristics are analyzed and compared using aerodynamic data of ten airfoils including the proposed airfoil. The blade is divided into the sixteen elements in the longitudinal direction of the blade for applying the Blade Element Method Theory (BEMT) method, and in each element, torque, thrust, and pitching moment are calculated using turbulent time varying wind speed and aerodynamic data of each wing. Additionally, each force and torque is accumulated in the whole region of the blade for the estimation of representative values. The magnitude of such forces is comparatively analyzed for different airfoils. The angle of attack is constant below the rated wind speed due to the fact that the tip speed ratio is kept at the constant value, and it increases in the region of over rated wind speed as the tip speed ratio decreasing with constant rated rpm and increasing wind speed. Such increase in the angle of attack causes the changes of the force acting on the airfoil with different characteristics of lift and drag in the stall region of each different airfoil. Even though the mean wind speed is in the rated speed in a given time, because of the turbulence, it has either the over rated or under rated speed most of the time. Furthermore, the dynamic properties of each force are analyzed in this rated wind speed in order to objectively understand the dynamic properties of the blades which are designed based on the different airfoils. These dynamic properties are also compared by the standard deviation of time varying characteristics. Moreover, the output characteristics of the wind turbine are investigated with different airfoils and wind speeds. Based on these investigations, it was revealed that the proposed airfoil (KA2) is well applicable to the blade with passive pitch control system.

ROTATING FLOW ANALYSIS AROUND A HAWT ROTOR BLADE USING RANS EQUATIONS (RANS 방정식을 이용한 HAWT 로터 블레이드의 회전 유동장 해석)

  • Kim, T.S.;Lee, C.;Son, C.H.;Joh, C.Y.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • The Reynolds-Averaged Navier-Stokes(RANS) analysis of the 3-D steady flow around the NREL Phase VI horizontal axis wind turbine(HAWT) rotor was performed. The CFD analysis results were compared with experimental data at several different wind speeds. The present CFD model shows good agreements with the experiments both at low wind speed which formed well-attache flow mostly on the upper surface of the blade, and at high wind speed which blade surface flow completely separated. However, some discrepancy occurs at the relatively high wind speeds where mixed attached and separated flow formed on the suction surface of the blade. It seems that the discrepancy is related to the onset of stall phenomena and consequently separation prediction capability of the current turbulence model. It is also found that strong span-wise flow occurs in stalled area due to the centrifugal force generated by rotation of the turbine rotor and it prevents abrupt reduction of normal force for higher wind speed than the designed value.

Development of Robot Hand for Transplanting Plug Seedlings (플러그묘 이식을 위한 로봇 핸드 개발)

  • 이현동;김기대;조성화;김찬수
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.251-260
    • /
    • 2004
  • As a basic experiment for robot hand for transplanting plug seedling, the experimental robot hand system which moves up and downward vertically, and allows hand blade to open and close was made. The system was constructed with the robot hand mechanism, the tray, the plug seedling, and the measuring equipments. The penetrating force and holding efficiency were analyzed according to the soil moisture and the variation of hand blade angle. The highest holding efficiency could be obtained at the penetrating angle of approximately from 0 to 0.36 degree and at the moisture content of soil from 71% to 75%. The external force acted on the robot hand should maximum force when the robot hand was penetrated to soil, minimum of approximately 30.4 N when the penetrating angle was 0$^{\circ}$ and moisture content was 66-70%. It was increased with increasing or decreasing the Penetrating angle from 0 degree and also with increasing or decreasing the moisture content of soil from 66-70%. For optimal design of the robot hand and manipulator, the external force acted on robot hand had to be based on the returning force of soil, when the robot hand was penetrated to the soil. In consideration of safety ratio, the appropriate external force seemed to be 39-49 N.

Analysis of the Breaking Factor of Rotary Blade by Photo elastic Method -A Stress Concentration by Static Load- (광탄성법(光彈性法)에 의한 로터리 경운날의 파괴요인(破壞要因)에 대한 해석(解析) -정하중(靜荷重)에 의한 응력집중(應力集中)-)

  • Choi, S.I.;Kim, J.H.;Kim, C.S.;Kim, J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.3
    • /
    • pp.177-185
    • /
    • 1990
  • The break of rotary blade is occured from a stress concentration of the inside of blade by the outside impulsive load. In order to examine its inside stress and stress concentration of rotary blade, a epoxy plate which is suitable to applicate by photoelastic system is used to experiment. These results are summarized as follow. 1. Refer to the existence of bolt hole and a size of its of rotary blade, a stress concentration which cause the break of rotary blade is not exposed. 2. It is expected to be break to section of hold of rotary blade and the break of this is due to that there are concentrated by shearing force, bending moment and bending stress. 3. When the crack which caused from processing are set up to any location, the stress concentration taken to the creak point. 4. Without regard to the location of the reaction points of rotary blade, the bending stress which is greated than the bending moment is occured within about 6 em toward the center line of bolt hole and it was possible to break that section.

  • PDF

3-DIMENSIONAL FLOW FIELD ANALYSIS AND TIP SHAPE DESIGN IN A WIND TURBINE BLADE (풍력 발전기 블레이드에 걸친 3차원 유동장 해석 및 팁 형상 설계)

  • Jeong, Jae-Ho;Yoo, Cheol;Lee, Jung-Sang;Kim, Ki-Hyun;Choi, Jae-Woong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.243-248
    • /
    • 2011
  • The 3-dimensional flow field has been investigated by numerical analysis in a 2.5MW wind turbine blade. Complicated and separated flaw phenomena in the wind turbine blade were captured by the Reynolds-averaged Navier-Stokes(RANS) steady flaw simulation using general-purpose code, CFX and the mechanism of vortex structure behavior is elucidated. The vortical flow field in a wind turbine rotor is dominated by the tip vortex and hub separation vortex. The tip vortex starts to be formed near the blade tip leading edge. As the tip vortex develops in the tangential direction, interacting with boundary layer from the blade tip trailing edge. The hub separation vortex is generated near the blade hub leading edge and develops nearly in the span-wise direction. Furthermore, 3-dimensional blade tip shape has been designed for increasing shrift power and reducing thrust force on the wind turbine blade. It is expected that the behavior of the tip vortex and hub separation vortex plays a major role in aerodynamic and aeroacoustic characteristics.

  • PDF