• Title/Summary/Keyword: Bit allocation

Search Result 274, Processing Time 0.023 seconds

The Design of DRAM Memory Modules in the Fabrication by the MCM-L Technique (DRAM 메모리 모듈 제작에서 MCM-L 구조에 의한 설계)

  • Jee, Yong;Park, Tae-Byung
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.5
    • /
    • pp.737-748
    • /
    • 1995
  • In this paper, we studyed the variables in the design of multichip memory modules with 4M$\times$1bit DRAM chips to construct high capacity and high speed memory modules. The configuration of the module was 8 bit, 16 bit, and 32 bit DRAM modules with employing 0.6 W, 70 nsec 4M$\times$1 bit DRAM chips. We optimized routing area and wiring density by performing the routing experiment with the variables of the chip allocation, module I/O terminal, the number of wiring, and the number of mounting side of the chips. The multichip module was designed to be able to accept MCM-L techiques and low cost PCB materials. The module routing experiment showed that it was an efficient way to align chip I/O terminals and module I/O terminals in parallel when mounting bare chips, and in perpendicular when mounting packaged chips, to set module I/O terminals in two sides, to use double sided substrates, and to allocate chips in a row. The efficient number of wiring layer was 4 layers when designing single sided bare chip mounting modules and 6 layers when constructing double sided bare chip mounting modules whereas the number of wiring layer was 3 layers when using single sided packaged chip mounting substrates and 5 layers when constructing double sided packaged chip mounting substrates. The most efficient configuration was to mount bare chips on doubled substrates and also to increase the number of mounting chips. The fabrication of memory multichip module showed that the modules with bare chips can be reduced to a half in volume and one third in weight comparing to the module with packaged chips. The signal propagation delay time on module substrate was reduced to 0.5-1 nsec.

  • PDF

A Dynamic Transmission Rate Allocation Algorithm for Multiplexing Delay-sensitive VBR-coded Streams (VBR로 부호화된 지연 민감 서비스의 다중화를 위한 동적인 전송률 할당 알고리즘)

  • 김진수;유국열;이문노
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7B
    • /
    • pp.628-637
    • /
    • 2003
  • This paper describes a novel multiplexing scheme for delay-sensitive multiple VBR-coded bit streams in live multimedia service offered to high-speed networks. The primary goal of multiplexing in this paper is to keep delay limits of each bit streams and to enhance network resource utilization when they no multiplexed and transmitted over network. For this aim, this paper presents a dynamical control scheme which does not cause violation of any delay constraints to each bit steam. The scheme is based on the assumption that recent behavior of the each bit scream has high correlation with near-term future behavior. Such property is used to make as flat as possible by both temporal averaging on a stream-by-stream and spatial averaging is introduced when multiple VBR-coded bit streams are multiplexed. The effectiveness of the scheme is evaluated by several simulation using an MPEG-coded video trace of Star_wars and it is shown that the proposed scheme can effectively reduce the feat rate md coefficient of variation of the multiplexed transmission rate.

A Perceptual Rate Control Algorithm with S-JND Model for HEVC Encoder (S-JND 모델을 사용한 주관적인 율 제어 알고리즘 기반의 HEVC 부호화 방법)

  • Kim, JaeRyun;Ahn, Yong-Jo;Lim, Woong;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.929-943
    • /
    • 2016
  • This paper proposes the rate control algorithm based on the S-JND (Saliency-Just Noticeable Difference) model for considering perceptual visual quality. The proposed rate control algorithm employs the S-JND model to simultaneously reflect human visual sensitivity and human visual attention for considering characteristics of human visual system. During allocating bits for CTU (Coding Tree Unit) level in a rate control, the bit allocation model calculates the S-JND threshold of each CTU in a picture. The threshold of each CTU is used for adaptively allocating a proper number of bits; thus, the proposed bit allocation model can improve perceptual visual quality. For performance evaluation of the proposed algorithm, the proposed algorithm was implemented on HM 16.9 and tested for sequences in Class B and Class C under the CTC (Common Test Condition) RA (Random Access), Low-delay B and Low-delay P case. Experimental results show that the proposed method reduces the bit-rate of 2.3%, and improves BD-PSNR of 0.07dB and bit-rate accuracy of 0.06% on average. We achieved MOS improvement of 0.03 with the proposed method, compared with the conventional method based on DSCQS (Double Stimulus Continuous Quality Scale).

An Efficient Snapshot Technique for Shared Storage Systems supporting Large Capacity (대용량 공유 스토리지 시스템을 위한 효율적인 스냅샷 기법)

  • 김영호;강동재;박유현;김창수;김명준
    • Journal of KIISE:Databases
    • /
    • v.31 no.2
    • /
    • pp.108-121
    • /
    • 2004
  • In this paper, we propose an enhanced snapshot technique that solves performance degradation when snapshot is initiated for the storage cluster system. However, traditional snapshot technique has some limits adapted to large amount storage shared by multi-hosts in the following aspects. As volume size grows, (1) it deteriorates crucially the performance of write operations due to additional disk access to verify COW is performed. (2) Also it increases excessively the blocking time of write operation performed during the snapshot creation time. (3)Finally, it deteriorates the performance of write operations due to additional disk I/O for mapping block caused by the verification of COW. In this paper, we propose an efficient snapshot technique for large amount storage shared by multi-hosts in SAN Environments. We eliminate the blocking time of write operation caused by freezing while a snapshot creation is performing. Also to improve the performance of write operation when snapshot is taken, we introduce First Allocation Bit(FAB) and Snapshot Status Bit(SSB). It improves performance of write operation by reducing an additional disk access to volume disk for getting snapshot mapping block. We design and implement an efficient snapshot technique, while the snapshot deletion time, improve performance by deallocation of COW data block using SSB of original mapping entry without snapshot mapping entry obtained mapping block read from the shared disk.

A New High speed, Low Power TFT-LCD Driving Method (새로운 고속, 저전력 TFT-LCD 구동 방법)

  • Park, Soo-Yang;Son, Sang-Hee;Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.134-140
    • /
    • 2006
  • This paper proposed a low power resource allocation algorithm for the minimum switching activity of operators in high level synthesis. In this paper, the proposed method finds switching activity in circuit each functional unit exchange for binary sequence length and value bit are logic one value. To use the switching activity was found the allocation with minimal power consumption, the proposed method visits all control steps one by one and determines the allocation with minimal power consumption at each control step. As the existing method, the execution time can be fast according to use the number of operator and maximal control step. And it is the reduction effect from 8.5% to 9.3%.

  • PDF

16kbps Windeband Sideband Speech Codec (16kbps 광대역 음성 압축기 개발)

  • 박호종;송재종
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.5-10
    • /
    • 2002
  • This paper proposes new 16 kbps wideband speech codec with bandwidth of 7 kHz. The proposed codec decomposes the input speech signal into low-band and high-band signals using QMF (Quadrature Mirror Filter), then AMR (Adaptive Multi Rate) speech codec processes the low-band signal and new transform-domain codec based on G.722.1 wideband cosec compresses the high-band signal. The proposed codec allocates different number of bits to each band in an adaptive way according to the property of input signal, which provides better performance than the codec with the fixed bit allocation scheme. In addition, the proposed cosec processes high-band signal using wavelet transform for better performance. The performance of proposed codec is measured in a subjective method. and the simulations with various speech data show that the proposed coders has better performance than G.722 48 kbps SB-ADPCM.

Design of Time-Division Half-Duplex Estimate and Forward Relaying System (시분할 반이중 추정 후 전달 릴레이 시스템 설계)

  • Hwang, In-Ho;Kim, Jee-Young;Lee, Jeong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.227-238
    • /
    • 2012
  • In this paper, we propose a practical time-division half-duplex Estimate and Forward (EF) relaying protocol. The conventional EF relaying protocol works well only when the relay node is near the destination node. The proposed EF relaying protocol, however, determines adaptively relay parameters such as the quantization level of relay node and the power allocation between source and relay nodes according to the channel conditions. By doing so, the proposed EF relaying protocol provides low probability of bit error even when the relay node is far from the destination node. Consequently, the proposed EF protocol is suitable for the mobile relay systems. It is shown by simulations that the proposed EF relaying protocol shows lower bit error rate for all relay positions than a conventional EF protocol.

S-JND based Perceptual Rate Control Algorithm of HEVC (S-JND 기반의 HEVC 주관적 율 제어 알고리즘)

  • Kim, JaeRyun;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.381-396
    • /
    • 2017
  • In this paper, the perceptual rate control algorithm is studied for HEVC (High Efficiency Video Coding) encoder with bit allocation based on perceived visual quality. This paper proposes perceptual rate control algorithm which could consider perceived quality for HEVC encoding method. The proposed rate control algorithm employs adaptive bit allocation for frame and CTU level using the perceived visual importance of each CTU. For performance evaluation of the proposed algorithm, the proposed algorithm was implemented on HM 16.9 and tested for sequences in Class B under the CTC (Common Test Condition) RA (Random Access) case. Experimental results show that the proposed method reduces the bitrate of 3.12%, and improves BD-PSNR of 0.08dB and bitrate accuracy of 0.07% on average. And also, we achieved MOS improvement of 0.16 with the proposed method, compared with the conventional method based on DSCQS (Double Stimulus Continuous Quality Scale).

Allocation algorithm applied building addressing value the coordinate in Smart Grid Environments (스마트그리드 환경에서 좌표 값을 적용한 빌딩 주소 할당 방법)

  • Im, Song-Bin;Oh, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1C
    • /
    • pp.45-53
    • /
    • 2012
  • In this paper, we proposed the efficient addressing scheme for improving the performance of routing algorithm by using ZigBee in Smart Grid environment. A distributed address allocation scheme used an existing algorithm that has wasted in address space. Therefore proposing x, y and z coordinate axes from divided address space of 16 bit to solve this problems. Each node was reduced not only bitwise but also multi hop using the coordinate axes while routing than $Cskip$ algorithm. I compared the performance between the standard and the proposed mechanism through the numerical analysis. Simulation verified performance about decrease averaging multi hop count that compare proposing algorithm and another. The numerical analysis results show that proposed algorithm reduced the multi hop better than ZigBee distributed address assignmen.

A Study on Fast 2-D DCT Using Hadamard Transform (Hadamard 변환을 이용한 고속 2차원 DCT에 관한 연구)

  • 전중남;최원호;최성남;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.3
    • /
    • pp.221-231
    • /
    • 1990
  • In this paper, A new 2-D DCT algorithm is proposed to reduce the computational amount of transform operation using the distribution of the motion compensated error signal and the bit allocation table. In the this algorithm, 2-D Walsh-Hadamard transform is directly computed and then multiplied by a constant matrix. Multiplications are concentrated on the final stage in thie algorithm, thus the computational amount is reduced in proportion to the number of transform coefficients that are excluded from quatization. The computational amount in computing only the DCT coefficients allocated to the bit allocation table is calculated. As the result, the number of multiplications is less thn the algorithm known to have the fewest number of computations when less than 0.6 bits per pixel are allocated to tranform coding for the motion compensated error image in the case of the proposed algorithm. Thus, it shows that the proposed algorithm is valid in reducing the computational loads of transform coding.

  • PDF