• Title/Summary/Keyword: Bit Operation

Search Result 752, Processing Time 0.033 seconds

An Efficient Snapshot Technique for Shared Storage Systems supporting Large Capacity (대용량 공유 스토리지 시스템을 위한 효율적인 스냅샷 기법)

  • 김영호;강동재;박유현;김창수;김명준
    • Journal of KIISE:Databases
    • /
    • v.31 no.2
    • /
    • pp.108-121
    • /
    • 2004
  • In this paper, we propose an enhanced snapshot technique that solves performance degradation when snapshot is initiated for the storage cluster system. However, traditional snapshot technique has some limits adapted to large amount storage shared by multi-hosts in the following aspects. As volume size grows, (1) it deteriorates crucially the performance of write operations due to additional disk access to verify COW is performed. (2) Also it increases excessively the blocking time of write operation performed during the snapshot creation time. (3)Finally, it deteriorates the performance of write operations due to additional disk I/O for mapping block caused by the verification of COW. In this paper, we propose an efficient snapshot technique for large amount storage shared by multi-hosts in SAN Environments. We eliminate the blocking time of write operation caused by freezing while a snapshot creation is performing. Also to improve the performance of write operation when snapshot is taken, we introduce First Allocation Bit(FAB) and Snapshot Status Bit(SSB). It improves performance of write operation by reducing an additional disk access to volume disk for getting snapshot mapping block. We design and implement an efficient snapshot technique, while the snapshot deletion time, improve performance by deallocation of COW data block using SSB of original mapping entry without snapshot mapping entry obtained mapping block read from the shared disk.

Integration of Current-mode VSFD with Multi-valued Weighting Function

  • Go, H.M.;Takayama, J.;Ohyama, S.;Kobayashi, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.921-926
    • /
    • 2003
  • This paper describes a new type of the spatial filter detector (SFD) with variable and multi-valued weighting function. This SFD called variable spatial filter detector with multi-valued weighting function (VSFDwMWF) uses current-mode circuits for noise resistance and high-resolution weighting values. Total weighting values consist of 7bit, 6-signal bit and 1-sign bit. We fabricate VSFDwMWF chip using Rohm 0.35${\mu}$m CMOS process. VSFDwMWF chip includes two-dimensional 10${\times}$13 photodiode array and current-mode weighting control circuit. Simulation shows the weighting values are varied and multi-valued by external switching operation. The layout of VSFDwMWF chip is shown.

  • PDF

A Study on the design of two's complement bit-serial FIR filter with systolic array architecture (Systolic Array를 이용한 Two's Complement Bit-Serial Fir 필터 설계에 관한 연구)

  • 엄두섭;박노경;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.5
    • /
    • pp.442-452
    • /
    • 1989
  • This Paper describes the impleentation of two's complement bit-serial FIR filter with systolic architectur. The filter coefficients are represented as sign and magnitude form and the input data is represented as two's complement form. We use systolic array to obtain high operation speed so this FIR filter sucessfully operates in real-time environment.

  • PDF

An Investigation of the Effect of Schotky Barrier-Height Enhancement Layer on MSMPD Dynamic Characteristics

  • Seo, Jong-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.2
    • /
    • pp.141-146
    • /
    • 2002
  • The effect of the wide-bandgap Schottky barrier enhancement cap layer on the performance of metal-semiconductor-metal photodetectors (MSMPD's) is presented. Judged by the dc characteristics, no considerable increase in recombination loss of carriers is resulted by the incorporation of the cap layer. However, about 45% of the detection efficiency is lost for the cap-layered MSMPD's even with a graded layer incorporated under pulse operation, and it was found to be due mainly to the capturing and slow release of the photocarriers at the heterointerface. The loss mechanism of the pulse detection efficiency is believed to be responsible for the intersymbol interference and the increased bit-error-rate (BER) observed in MSMPD's when used with a high bit rate pseudo-random-bit-stream (PRBS) data pattern.

A Study on the 32 bit RISC/DSP Microprocessor Appropriate for Embedded Systems (내장형 시스템에 적합한 32 비트 RISC/DSP 마이크로프로세서에 관한 연구)

  • 유동열;문병인;홍종욱;이태영;이용석
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.257-260
    • /
    • 1999
  • We have designed a 32-bit RISC microprocessor with 16/32-bit fixed-point DSP functionality. This processor, called YRD-5, combines both general-purpose microprocessor and digital signal processor (DSP) functionality using the reduced instruction set computer (RISC) design principles. It has functional units for arithmetic operation, digital signal processing (DSP) and memory access. They operate in parallel in order to remove stall cycles after DSP and load/store instructions with one or more issue latency cycles. High performance was achieved with these parallel functional units while adopting a sophisticated 5-stage pipeline structure and an improved DSP unit.

  • PDF

A Bit-level ACSU of High Speed Viterbi Decoder

  • Kim, Min-Woo;Cho, Jun-Dong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.240-245
    • /
    • 2006
  • Viterbi decoder is composed of BMU(Branch metric Unit), ACSU(Add Compare Select Unit), and SMU(Survivor path Memory Unit). For high speed viterbi decoders, ACSU is the main bottleneck due to the compare-select and feedback operation. Thus, many studies have been advanced to solve the problem. For example, M-step look ahead technique and Minimized method are typical high speed algorithms. In this paper, we designed a bit-level ACSU(K=3, R=1/2, 4bit soft decision) based on those algorithms and switched the matrix product order in the backward direction of Minimized method so as to apply Code-Optimized-Array in order to reduce the area complexity. For experimentation, we synthesized our design by using SYNOPSYS Design compiler, with TSMC 0.18 um library, and verified the timing by using CADENCE verilog-XL.

Error Detection Architecture for Modular Operations (Modular 연산에 대한 오류 탐지)

  • Kim, Chang Han;Chang, Nam Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.193-199
    • /
    • 2017
  • In this paper, we proposed an architecture of error detection in $Z_N$ operations using $Z_{(2^r-1)N}$. The error detection can be simply constructed in hardware. The hardware overheads are only 50% and 1% with respectively space and time complexity. The architecture is very efficient because it is detection 99% for 1 bit fault. For 2 bit fault, it is detection 99% and 50% with respective r=2 and r=3.

Implementation of 2-D DCT/IDCT VLSI based on Fully Bit-Serial Architecture (완전 비트 순차 구조에 근거한 2차원 DCT/IDCT VLSI 구현)

  • 임호근;류근장;권용무;김형곤
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.188-198
    • /
    • 1994
  • The distributed arithmetic approach has been commonly recognized as an efficient method to implement the inner-product type of computation with fixed coefficients such as DCT/IDCT. This paper presents a novel architecture and the implementation of 2-D DCT/IDCT VLSI chip based on distributed arithmetic. The main feature of the proposed architecture is a fully 2-bit serial pipeline and parallel structure with memory-based signal processing circuitry, which is efficient to the implementation of the bit-serial operation of distributed arithmetic. All modules of the proposed architecture are designed with NP-dynamic circuitry to reduce the power consumption and to increase the performance. This chip is applicable in HDTV systems working at video sampling rate up to 75 MHz.

  • PDF

Design and Implementation of a Power Aware Scalable Pipelined Booth Multiply & Accumulate Unit (소비전력 인지형 곱셈 연산 누적기의 설계 및 구현)

  • Shin, Min-Hyuk;Lee, Han-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.573-574
    • /
    • 2006
  • A low-power power-aware scalable pipelined Booth recoded multiply & Accumulate unit (PA-MAC) detects the input operands for their dynamic range and accordingly implements a 16-bit, 8-bit or 4-bit multiplication and accumulation operation. The multiplication mode is determined by the dynamic - range detection unit. For the computations, although an area of the proposed PA-MAC is lager than a non-scalable MAC respectively, the proposed PA-MAC proves to be globally more power efficient than a non-scalable MAC.

  • PDF

Design of 8-bit DAC for System on Panel using Low Temperature Poly-Si TFTs (저온 Poly-Si TFT를 이용한 System on Panel용 8-Bit DAC 설계)

  • Byun, Chun-Won;Choi, Byong-Deok
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.841-842
    • /
    • 2006
  • This paper has proposed a serial 8-bit DAC for column driver circuits of mobile displays using LTPS TFTs. The DAC circuit takes very small area by using parasitic capacitance of column lines as sampling and holding capacitors. Moreover, the proposed DAC does not need the analog buffer, because the DAC operation is performed on the column lines. For the data driver circuits of 2-inch qVGA OLED panel, the DAC area is $84um{\times}800um$ and the simulated DAC power consumption is 8.5mW with 10-V supply voltage.

  • PDF