• Title/Summary/Keyword: Bit Error Rate Analysis

Search Result 337, Processing Time 0.025 seconds

The Analysis of Multipath Characteristic Using Inductance Loaded Antenna (인덕턴스 장하 안테나의 다중경로특성 해석)

  • Hwang, Jae-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.559-562
    • /
    • 2010
  • This paper deals with characteristic of the several environment of multipath using antennas. The transmit antenna is ${\lambda}$/4 dipole and receive antenna is inductance loaded antenna. We investigate the significance of a solution of interference by multipath by comparing BER(Bit-Error-Rate) in multipath environment.

  • PDF

Performance Analysis of ICI reduction in OFDM system (OFDM시스템에서 ICI 감소 기술의 성능해석)

  • Jang, Eun-Young;Byon, Kun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1150-1155
    • /
    • 2007
  • Orthogonal Frequency Division Multiplexing (OFDM) is an emerging multi-carrier modulation scheme, which has been adopted for several wireless standards such as IEEE 802.11a and HiperLAN2. A well-known problem of OFDM is its sensitivity to frequency offset between the transmitted and received carrier frequencies. This frequency offset introduces inter-carrier interference (ICI) in the OFDM symbol. This paper investigates three methods for combating the effects of ICI: ICI self-cancellation (SC), maximum likelihood (ML) estimation, and extended Kalman filter (EKF) method. These three methods are compared in terms of bit error rate performance.

Impacts of Non-Uniform Source on BER for SSC NOMA (Part II): Improved BER Performance Analysis

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.48-54
    • /
    • 2021
  • In most existing researches on non-orthogonal multiple access (NOMA) with symmetric superposition coding (SSC), uniform sources have been usually considered. For the first part in this two-part paper, for the strongest channel gain user, we showed that the bit-error rate (BER) for the optimal maximum a-posteriori (MAP) receiver for the non-uniform source improves slightly, compared to that of the conventional receiver for the uniform sources. We demonstrate that in communication scenarios of the non-uniform source NOMA schemes, for the weakest channel gain user, the BER performance of the optimal MAP receiver for a non-uniform source improves greatly, compared to that of the conventional receiver for uniform sources. We first derive an analytical expression of the BER for non-uniform source NOMA with SSC. Then, simulations demonstrate that the BER of the optimal MAP receiver for the non-uniform source improves, compared with that of the conventional maximum likelihood (ML) receiver for the uniform sources. In result, the proposed optimal MAP receiver for the non-uniform source could be a promising scheme for SSC NOMA, with improved BER performances.

Experimental Study of Large-amplitude Wavefront Correction in Free-space Coherent Optical Communication

  • Guo, Qian;Cheng, Shuang;Ke, Xizheng
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.627-640
    • /
    • 2021
  • In a free-space coherent optical communication system, wavefront distortion is frequently beyond the correction range of the adaptive-optics system after the laser has propagated through the atmospheric turbulence. A method of residual wavefront correction is proposed, to improve the quality of coherent optical communication in free space. The relationship between the wavefront phase expanded by Zernike polynomials and the mixing efficiency is derived analytically. The influence of Zernike-polynomial distortion on the bit-error rate (BER) of a phase-modulation system is analyzed. From the theoretical analysis, the BER of the system changes periodically, due to the periodic extension of wavefront distortion. Experimental results show that the BER after correction is reduced from 10-1 to 10-4; however, when the closed-loop control algorithm with residual correction is used, the experimental results show that the BER is reduced from 10-1 to 10-7.

Correlated Intelligent Reflecting Surface and Improved BER Performance of NOMA

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.79-84
    • /
    • 2022
  • Towards the sixth generation (6G) mobile networks, spectrum and energy efficiency of non-orthogonal multiple access (NOMA) transmissions in the fifth generation (5G) wireless system have been improved by intelligent reflecting surface (IRS) technologies. However, the reflecting devices of an IRS tend to be correlated because they are placed close on the surface each other. In this paper, we present an analysis on the correlated IRS in NOMA cellular networks. Specifically, we consider the bit-error rate (BER) performances for correlated-IRS in NOMA networks. First, based on the central limit theorem, we derive an approximate analytical expression of the BER for correlated-IRS NOMA systems, by using the second moment of the channel gain. Then we validate the proposed analytical BER by Monte Carlo simulations, and show that they are in good agreement. In addition, we also show numerically the BER improvement of the correlated-IRS NOMA over the conventional independent-IRS NOMA.

BER Performance Analysis of Intelligent Reflecting Surface NOMA for Strongest Channel Gain User

  • Kyuhyuk, Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.84-89
    • /
    • 2023
  • Recently, the sixth generation (6G) networks have become tremendous research topics. Intelligent reflecting surface (IRS) technologies have been envisioned, to increase spectrum and energy efficiency for the fifth generation (5G) mobile networks, towards the sixth generation (6G) communications. In this paper, especially for the strongest channel gain user, we investigate the bit-error rate (BER) of non-orthogonal multiple access (NOMA) systems with intelligent reflecting surface (IRS). First, we derive a BER expression in a closed-form of Q functions. Second, we investigate the BER performance improvement of IRS NOMA systems over NOMA systems versus the power allocation. Moreover, we analyze the BER performance improvement of IRS NOMA systems over NOMA systems versus the number of IRS devices. In results, NOMA equipped with IRS technologies could play an important role in the paradigm shift from 5G mobile networks to 6G mobile networks.

BER Simulator Development for Link Compliance Analysis

  • Kang, Hyun-Chul;Kim, Woo-Seop;Lee, Jae-Wook;Jang, Young-Chan;Park, Hwan-Wook;Kim, Jong-Hoon;Lee, Jung-Bae;Kim, Chang-Hyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.150-155
    • /
    • 2008
  • This paper is related to developing new Bit Error Rate (BER) simulator, Sam sung BER simulator (SBERS), in order to evaluate the link compliance and all kinds of effects of link compliance in a real environment. SBERS allows to generate transmit pulse accurately by using the various parameters, and obtain the eye diagram and bathtub curve, which represents the performance of link, by calculating the transmit pulse and the measured frequency response characteristics. SBERS give results as same as real environment after taking account of distribution and value of noise. To verify the accuracy of simulator, we derive the simulated and measured result and compare eye opening. The difference came out to be within 5% error. It is possible to estimate the real environment and design the transmitter and receiver circuit effectively using new BER simulator, SBERS.

Performance Analysis of Block Linear MMSE Equalization for OFDM Systems in Doubly Selective Channels (이중 선택적 채널 OFDM 시스템을 위한 블록 선형 MMSE 등화 방식의 성능 분석)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.76-82
    • /
    • 2010
  • In this paper, we analyze the performance of the block linear MMSE equalization for OFDM systems in doubly selective channels by computer simulations. The block linear MMSE equalization shows somewhat unusual BER characteristics in that the BER curve drops at first as SNR increases but then rises up as SNR increases further beyond some point. In this paper, we investigate the BER characteristics of the block linear MMSE equalization by analyzing the condition number of the coefficient matrix in the linear system involved in the equalization process, and propose a new method to avoid the BER performance degradation at high SNR.

A Comparison of Signal Processing Techniques in Optical Current Sensor for GIS

  • Kim, Young-Min;Park, Jung-Hwan;Jee, Seung-Wook;Lee, Kwang-Sik;Kim, Jung-Bae;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.103-109
    • /
    • 2006
  • This research is contents about output characteristic of optic current sensor that use faraday effect. optic current sensor used in an experiment is consisted of three parts.(1) Source of light used laser diode of 1310[nm].(2) Sensor section manufactured circularly according to gas insulated switchgear. And $9/125[{\mu}m]$ standard single mode optical fiber for communication was installed winding 20 [turn] on sensor section core surroundings of diameter 31 [cm].(3) Electrical signal of PD(Photo detector) is collected using NI company's 16bit DAQ board via terminal block. Collected data analyzed by different three signal processing methods. NI company's $Labview^{TM}$ was used to signal processing software. As a result, In signal processing of optic current sensor, we could know that noise greatly more influences the error generation than fluctuation of light intensity. also, 1 class CT(current transformer) manufacture that have error rate less than 1[%] was available by removing these

A Novel Enhanced Decision-Directed Channel Estimation Scheme in High-Speed Mobile Environments (고속 이동 전파환경에서 결정지향 채널 추정 기법의 개선)

  • Ren, Yongzhe;Park, Dong Chan;Kim, Suk Chan
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.29-32
    • /
    • 2015
  • It has been a big trend of the convergence technologies about communication systems and vehicular industry to improve safety and convenience. To achieve a number of infotainment vehicular applications, vehicles should transmit information with high reliability. A robust and accurate channel estimation scheme is of great importance to achieve the goal. In this paper, we present a novel enhanced decision-directed channel estimation scheme called FADP (Frequency Averaging Data Pilot) for dynamic time-varying vehicular channels in IEEE 802.11p. We use linear averaging filtering in frequency domain, and utilize the correlation characteristic of the channels between the adjacent two data symbols, update the CR in time domain to get more accuracy. Finally, analysis and simulation results reveal that compared with exist schemes, the proposed scheme has a good performance in mean square error (MSE) and bit error rate (BER).