DOI QR코드

DOI QR Code

Impacts of Non-Uniform Source on BER for SSC NOMA (Part II): Improved BER Performance Analysis

  • 투고 : 2021.08.26
  • 심사 : 2021.09.08
  • 발행 : 2021.11.30

초록

In most existing researches on non-orthogonal multiple access (NOMA) with symmetric superposition coding (SSC), uniform sources have been usually considered. For the first part in this two-part paper, for the strongest channel gain user, we showed that the bit-error rate (BER) for the optimal maximum a-posteriori (MAP) receiver for the non-uniform source improves slightly, compared to that of the conventional receiver for the uniform sources. We demonstrate that in communication scenarios of the non-uniform source NOMA schemes, for the weakest channel gain user, the BER performance of the optimal MAP receiver for a non-uniform source improves greatly, compared to that of the conventional receiver for uniform sources. We first derive an analytical expression of the BER for non-uniform source NOMA with SSC. Then, simulations demonstrate that the BER of the optimal MAP receiver for the non-uniform source improves, compared with that of the conventional maximum likelihood (ML) receiver for the uniform sources. In result, the proposed optimal MAP receiver for the non-uniform source could be a promising scheme for SSC NOMA, with improved BER performances.

키워드

참고문헌

  1. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, "Non-orthogonal multiple access (NOMA) for cellular future radio access," in Proc. IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1-5, 2013. DOI: https://doi.org/10.1109/VTCSpring.2013.6692652
  2. Z. Ding, P. Fan, and H. V. Poor, "Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions," IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6010-6023, Aug. 2016. DOI: https://doi.org/10.1109/TVT.2015.2480766
  3. Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. Bhargava, "A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends," IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181-2195, Oct. 2017. DOI: https://doi.org/10.1109/JSAC.2017.2725519
  4. H. Li, Z. Huang, Y. Xiao, S. Zhan, and Y. Ji, "Solution for error propagation in a NOMA-based VLC network: symmetric superposition coding," Opt. Exp., vol. 25, no. 24, pp. 29856-29863, Nov. 2017. DOI: https://doi.org/10.1364/OE.25.029856
  5. J. Ziv and A. Lempel, "A universal algorithm for sequential data compression," IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337-343, May. 1977. DOI: http://dx.doi.org/10.1109/TIT.1977.1055714
  6. K. Chung, "Unipodal 2PAM NOMA without SIC: toward Super Ultra-Low Latency 6G," International Journal of Internet, Broadcasting and Communication (IJIBC), vol. 13, no. 1, pp. 69-81, Feb. 2021. DOI: http://dx.doi.org/10.7236/IJIBC.2021.13.1.69
  7. K. Chung, "Near-BER lossless asymmetric 2PAM non-SIC NOMA with low-complexity and low-latency under user-fairness," International Journal of Internet, Broadcasting and Communication (IJIBC), vol. 13, no. 2, pp. 43-51, May. 2021. DOI: http://dx.doi.org/10.7236/IJIBC.2021.13.2.43
  8. K. Chung, "Quadrature Correlated Superposition Modulation: Practical Perspective of Correlated Superposition Coding," International Journal of Internet, Broadcasting and Communication (IJIBC), vol. 13, no. 3, pp. 17-24, Aug. 2021. DOI: http://dx.doi.org/10.7236/IJIBC.2021.13.3.17
  9. K. Chung, "NOMA for correlated information sources in 5G Systems," IEEE Commun. Lett., vol. 25, no. 2, pp. 422-426, Feb. 2021. DOI: https://doi.org/10.1109/LCOMM.2020.3027726
  10. K. Chung, "Correlated superposition coding: Lossless two-user NOMA implementation without SIC under user-fairness," IEEE Wireless Commun. Lett., vol. 10, no. 9, pp. 1999-2003, June. 2021. DOI: https://doi.org/10.1109/LWC.2021.3089996