• Title/Summary/Keyword: Bisphenol A (BPA)

Search Result 193, Processing Time 0.027 seconds

Optimization of Bisphenol A Biodegradation by Trametes versicolor (Trametes versicolor에 의한 Bisphenol A 생분해의 최적조건)

  • Kang, Ae-Ri;Choi, Hyoung-Tae;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.37-42
    • /
    • 2008
  • Optimal conditions for the biodegradation of endocrine-disrupting bisphenol A (BPA) were examined for the white rot fungus Trametes versicolor isolated in Korea. T. versicolor degraded 100% of 50 mg/L bisphenol A during 12 hr in yeast extract-malt extract-glucose (YMG) medium. When BPA was added to the 5-day preincubated fungal culture in YMG medium, all BPA was removed in 2 hr. T. versicolor could efficiently degrade BPA at $35^{\circ}C$, pH 6 in YMG medium. T. versicolor could more easily remove BPA of $1{\sim}25\;mg/L$ than that of higher concentrations ($50{\sim}100\;mg/L$) in YMG medium. T. versicolor degraded 100% of 50 mg/L BPA for 36 h in a minimal medium, which is lower degradation rate than that in YMG medium. Optimal conditions for BPA biodegradation in the minimal medium were similar to those in YMG medium. When BPA (50 mg/L) was added into domestic wastewater, it could be completely removed by T. versicolor. During the biodegradation of BPA by T. versicolor in YMG medium, its estrogenic activity decreased.

Synthesis of Bishydroxyethyl Ether of Bisphenol A(BHE-BPA) Through the Depolymerization of Polycarbonate (폴리카보네이트 해중합을 이용한 Bisphenol A계 Bishydroxyethyl Ether 화합물 생성 특성)

  • Heo, Miseon;Kim, Beomsik;Park, Youin;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.164-171
    • /
    • 2010
  • Recently, the waste of Polycarbonate(PC) is increase with the increase in demand of a polycarbonate. It is concerned with producing a new material and diol monomer, bishydroxyethyl ether of bisphenol A(BHE-BPA) through depolymerization of the polycarbonate waste at recycling. BHE-BPA can be used as a good raw material for the synthesis of polycarbonate type polyurethane. PC particles were depolymerized with base-catalyst NaOH, solvent EG, and ethylene carbonate(EC) was formed during the PC depolymerziation. EC was added to promote the conversion from bispenol-A to BHE-BPA. The characteristics of depolymeraion of polycarbonate as well as conversion of bispenol-A to BHE-BPA were investigated. BHE-BPA yield of 92% was obtained at temperature $220^{\circ}C$, 10% catalyst/PC mole ratio, 20 mmol of EC. BHE-BPA purity of better than 99% was achieved by crystallization of BHE-BPA.

Immunopathological studies in mice exposed to bisphenol A (마우스에서 bisphenol A 노출로 인한 면역병리학적 연구)

  • 변정아;표명운
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.324-330
    • /
    • 2002
  • Bisphenol A (BPA) is a monomer widely used in the manufacturing polycarbonate plastics or epoxy resin, and xenobiotics recently known as endocrine disrupting chemical. In this paper, to assess the effects of bisphenol A on immunopathological parameters (body weight, organ weight, hematological parameters, cellularity and surface marker) in mice, ICR female mice were orally exposed to BPA dissolved in olive oil as concentrations of 100, 500, 1000 ㎎/㎏/day b.w. 5 days a week for 30 days (subacute exposure). Liver - and kidney weight was significantly increased as dose-dependent manner, but body- , spleen- and thymus- weight didn't changed. In hematological parameters, WBC and MCHC were lowered but HCT and MCV were siginificantly enhanced. There was no significant differences in peritoneal macrophages number of the mice exposed to BPA. However, number of splenocytes of spleen, CD3/sup +/ and CD4/sup +/ cell in splenocytes, CD4/sup +/ and CD8/sup +/ cell in thymocytes were decreased at the mice subacutely exposed to BPA. In addition, BPA decreased expression of B7-1 and B7-2 on macrophages. Therefore, these results showed BPA may affect hematological parameters, cellularity and surface marker of immunocytes.

  • PDF

Endocrine Disruption Potentials of Bisphenol A Alternatives - Are Bisphenol A Alternatives Safe from Endocrine Disruption?

  • Ji, Kyunghee;Choi, Kyungho
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • Objectives: Although a great body of knowledge is available on the toxicity of bisphenol A (BPA), little is known about that of BPA alternatives, such as bisphenol analogues (BPs) or $Tritan^{TM}$ copolyesters. This review provides a summary of the available information on the toxicity of BPs and three components of $Tritan^{TM}$, with a special focus on endocrine disruption. Methods: We collected from the literature a battery of in vitro and in vivo assay data developed to assess endocrine disruption of four BPs (bisphenol AF, B, F, and S) and three major components of $Tritan^{TM}$ ((di-methylterephthalate (DMT), 1,4-cyclohexanedimethanol (CHDM), and 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD)). Results: Several alternative compounds were identified as possessing comparable or even greater endocrinedisrupting effects than BPA in in vitro and in vivo studies. Conclusions: Potential endocrine disruption of BPA alternatives requires further studies on health consequences in experimental animals and in humans following longer term exposure.

Impact of Dissolved Wastewater Constituents on Laccase-Catalyzed Treatment of Bisphenol A

  • Kim, Young-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.161-166
    • /
    • 2004
  • The impact of dissolved wastewater constituents on the treatment of synthetic bisphenol A (BPA) solutions was investigated under a variety of reaction conditions. The laccase enzyme from Trametes vesicolor was used for the BPA treatment. The constituents studied included various inorganic salts, organic compounds and heavy metal ions. BPA degradation was inhibited by sulfate, thiosulfate, sulfide, nitrite, and cyanide ions at 25 mg/$\ell$, 100mg/$\ell$, 25 mg/$\ell$ 150 mg/$\ell$, and 2.5 mg/$\ell$, respectively. However, the inhibitive effects of sulfide and sulfite on BPA degradation were diminished by additional aeration to oxidize them. Formaldehyde significantly reduced the rate of BPA degradation at 1.0% among organic compounds studied. Among heavy metal ions tested, Fe(II) substantially suppressed BPA removal at 1 mM. MgCl$_2$ and CaCl$_2$ exhibited great inhibition of BPA degradation at 25mM.

Time-dependent Effects of Bisphenol Analogs on Ecdysteroid Pathway Related Genes in the Brackish Water Flea Diaphanosoma celebensis (Bisphenol 구조 유사체가 기수산 물벼룩 Ecdysteroid 경로에 미치는 영향)

  • In, Soyeon;Lee, Young-Mi
    • Journal of Marine Life Science
    • /
    • v.6 no.2
    • /
    • pp.73-79
    • /
    • 2021
  • Bisphenol A is a representative endocrine disruptor and continuously detected in aquatic environment due to wide use, resulting in adverse effects on growth, development, and reproduction in diverse organisms as well as human. Structural analogs have been developed to substitute BPA are also suspected to have endocrine disrupting effects. In the present study, the time-dependent expression patterns of ecdysteroid synthesis (nvd, cyp314a1), receptors (EcRA, EcRB, USP, ERR), and downstream signaling pathway - related genes (HR3, E75, Vtg, VtgR) were investigated using quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) in the brackish water flea Diaphanosoma celebensis exposed to Bisphenol analogs (BPs; BPA, BPF, and BPS) for 6, 12, and 24 h. As results, the expression of nvd, cyp314a1, EcRs, USP, ERR and E75 mRNA was upregulated at 6 h exposure to BPF, which is earlier than BPA and BPS (12 h). On the other hand, HR3, E75 and VtgR mRNA levels were elevated at 6 h earlier at BPS and BPF than at BPA (12 h), but Vtg mRNA level was slightly changed within 24 h. These findings suggest that like BPA, BPF and BPS can also modulate the transcription of ecdysteroid pathway - related genes with different mechanisms, and have a potential as endocrine disruptors. This study will provide a better understanding the molecular mode of action of bisphenols on ecdysteroid pathway in the brackish water flea.

Modifying Effect of Bisphenol A on the Preneoplastic and Neoplastic Lesions of Rat Liver Treated with Diethylnitrosamine Infusion (화학적 간발암모델에서 Bisphenol A가 간암의 전암성 및 종양성 병변에 미치는 영향)

  • Park, Ki-Dae;Han, Beom-Seok;Rhim, Kook-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.60-66
    • /
    • 2006
  • Bisphenol A(BPA) was known as an endocrine disrupting chemical. This study was conducted to assess the effect of BPA, weaker estrogen, on the preneoplastic and neoplastic lesions induced by diethylnitrosamine (DEN). One hundred male F344 rats were divided into four groups which were treated with DEN followed by BPA. To make liver tumor early, we conducted that DEN containing osmotic pump implanted into rat abdominal cavity. Then diet containing BPA were fed to the rats. All animals were sacrificed at 10 and 18 weeks. Body weights were significantly decreased in 4000ppm at 18 weeks. Relative Liver weights of 4000 ppm BPA treated group were significantly increased compared to that of DEN alone group at 18 weeks. There were no significant differences of liver tumor incidences. Sum area of GST-P positive foci and BrdU labeling indices of BPA treated group were not significantly different compared to those of control group. These results suggest that BPA have no effects in preneoplastic and neoplastic lesions on DEN-induced hepatocarcinogenesis.

Understanding the molecular mechanisms of bisphenol A action in spermatozoa

  • Rahman, Md Saidur;Pang, Myung-Geol
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.3
    • /
    • pp.99-106
    • /
    • 2019
  • Bisphenol A (BPA) is an endocrine-disrupting chemical that is capable of interfering with the normal function of the endocrine system in the body. Exposure to this chemical from BPA-containing materials and the environment is associated with deleterious health effects, including male reproductive abnormalities. A search of the literature demonstrated that BPA, as a toxicant, directly affects the cellular oxidative stress response machinery. Because of its hormone-like properties, it can also bind with specific receptors in target cells. Therefore, the tissue-specific effects of BPA mostly depend on its endocrine-disrupting capabilities and the expression of those particular receptors in target cells. Although studies have shown the possible mechanisms of BPA action in various cell types, a clear consensus has yet to be established. In this review, we summarize the mechanisms of BPA action in spermatozoa by compiling existing information in the literature.

Maternal Exposure to Bisphenol A Impacts on Fecundity in F1 and F2 Generations in Drosophila melanogaster

  • Kim, Sohee;Kang, Kyong-hwa;Koh, Hyongjong
    • Development and Reproduction
    • /
    • v.25 no.3
    • /
    • pp.193-197
    • /
    • 2021
  • In previous reports, bisphenol A (BPA) exposure affects reproductive function in Drosophila melanogaster females. To test the maternal effect of BPA exposure on fly reproductive function, F0 mothers were exposed to 0, 0.1, 1, and 10 mg/L of BPA and the fecundity in F1 and F2 generations were checked. In this experiment, 1 and 10 mg/L BPA significantly decreased the fecundity of F1 females. Moreover, 0.1 and 1 mg/L BPA substantially reduced egg production in the F2 generation. These results suggested that maternal exposure to BPA at enviromentally relavant concnetrations reduces reproductive function in Drosophila melanogaster females and that this effect is transgenerational.

In vivo effects of bisphenol A exposure on haematological parameters in Korean rockfish, Sebastes schlegeli (Bisphenol A의 노출에 따른 조피볼락(Sebastes schlegeli)의 혈액학적 영향)

  • Keum, Yoo-Hwa;Jee, Jung-Hoon;Lee, Ok-Hyun;Park, Soo-Il;Kang, Ju-Chan
    • Journal of fish pathology
    • /
    • v.18 no.3
    • /
    • pp.293-300
    • /
    • 2005
  • This study was conducted to investigate the effect of bisphenol A (BPA; 4,4' -isopropylidenediphenol) on haematological parameters of Korean rockfish, Sebastes schlegeli in laboratory condition, Fish were randomly distributed into three treatment groups which were received of 0.1, 1 and 10 mg BPA $kg^{-1}$ body weight. They were injected four times intraperitoneally at days 0,3,7 and 12 with BPA. Control group was subjected to the same regime using an equal volume of 60% ethanol-mixed PBS carrier injection only. Fish from each group were sacrificed on day 15 after first injection for haematological assay. Observations on haematological parameters indicated BPA-treatment induced lower level of red blood cell counts and hemoglobin concentration. Serum chloride, calcium, glucose, bilirubin and blood urea nitrogen concentrations increased following exposure to BPA at 10 mg $kg^{-1}$ body weight. In contrast, serum cholesterol in fish exposed to BPA decreased. Serum transaminase and lactate dehydrogenase activities after the highest level of 10 mg $kg^{-1}$ PBA was significantly increased. These results demonstrate that BPA have induced adverse impact on haematological parameters in the Korean rockfish, Sebastes schlegeli.