Optimization of Bisphenol A Biodegradation by Trametes versicolor

Trametes versicolor에 의한 Bisphenol A 생분해의 최적조건

  • Kang, Ae-Ri (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University) ;
  • Choi, Hyoung-Tae (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University)
  • 강애리 (강원대학교 자연과학대학 생명과학부, 강원대학교 생명과학연구소) ;
  • 최형태 (강원대학교 자연과학대학 생명과학부, 강원대학교 생명과학연구소) ;
  • 송홍규 (강원대학교 자연과학대학 생명과학부, 강원대학교 생명과학연구소)
  • Published : 2008.03.31

Abstract

Optimal conditions for the biodegradation of endocrine-disrupting bisphenol A (BPA) were examined for the white rot fungus Trametes versicolor isolated in Korea. T. versicolor degraded 100% of 50 mg/L bisphenol A during 12 hr in yeast extract-malt extract-glucose (YMG) medium. When BPA was added to the 5-day preincubated fungal culture in YMG medium, all BPA was removed in 2 hr. T. versicolor could efficiently degrade BPA at $35^{\circ}C$, pH 6 in YMG medium. T. versicolor could more easily remove BPA of $1{\sim}25\;mg/L$ than that of higher concentrations ($50{\sim}100\;mg/L$) in YMG medium. T. versicolor degraded 100% of 50 mg/L BPA for 36 h in a minimal medium, which is lower degradation rate than that in YMG medium. Optimal conditions for BPA biodegradation in the minimal medium were similar to those in YMG medium. When BPA (50 mg/L) was added into domestic wastewater, it could be completely removed by T. versicolor. During the biodegradation of BPA by T. versicolor in YMG medium, its estrogenic activity decreased.

국내에서 분리된 구름버섯(Trametes versicolor)에 의한 내분비계 장애물질 bisphenol A의 생분해 효율을 높이기 위하여 그 생분해 최적조건을 조사하였다. T. versicolor는 Yeast extract-Malt extract-Glucose (YMG) 배지에서 12시간 이내에 50 mg/L bisphenol A를 100% 생분해하며, 5일 동안 선배양 시에는 2시간 이내에 100% 제거하였다. Bisphenol A의 농도가 낮을수록, 온도는 $35^{\circ}C$, pH 6에서 생분해율이 가장 높았으며 교반의 영향은 크지 않았다. 최소배지에서는 생분해율이 약간 낮았지만 최적조건은 YMG 배지에서와 유사하였다. 생분해에 관여하는 리그닌 분해효소 laccase의 mediator인 ABTS [2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt]를 최소배지에 첨가할 경우 bisphenol A의 생분해가 촉진되었다. 접종물 중 배양 상등액에 대한 균체량의 비율이 높을수록 생분해율이 증가하였는데 그 비율이 50%일 때 폐수에 첨가한 50 mg/L의 bisphenol A가 4일째에 100% 분해되었다. YMG 배지에서 bisphenol A의 생분해에 따라 내분비계 장애효과를 나타내는 에스트로겐 활성은 감소하였다.

Keywords

References

  1. Barreca, A.M., M.F. Fabbrini, C. Galli, P. Gentili, and S. Ljunggren. 2003. Laccase mediated oxidation of a lignin model for improved delignification procedures. J. Mol. Catal. B: Enzym. 25, 105-110
  2. Chai, W., Y. Handa, M. Suzuki, M. Saito, N. Kato, and C. Horiuchi. 2005. Biodegradation of bisphenol A by fungi. Appl. Biochem. Biotechnol. 120, 175-182 https://doi.org/10.1385/ABAB:120:3:175
  3. Goodson, M., W. Summerfield, and I. Cooper. 2002. Survey of bisphenol A and bisphenol F in canned foods. Food Addit. Contam. 19, 796-802 https://doi.org/10.1080/02652030210146837
  4. Glenn, J.K., L. Akileswaran, and M.H. Gold. 1986. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 251, 688-696 https://doi.org/10.1016/0003-9861(86)90378-4
  5. Hirano, T., Y. Honda, T. Watanabe, and M. Kuwahara. 2000. Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete. Biosci. Biotechnol. Biochem. 64, 1958-1962 https://doi.org/10.1271/bbb.64.1958
  6. Howdeshell, K.L., A.K. Hotchkiss, J.G. Vandenbergh, and F.S. Vom Saal. 1999. Environmental toxins: Exposure to bisphenol A advances puberty. Nature 401, 763-764 https://doi.org/10.1038/44517
  7. Hwang, S.-S. and H.-G. Song. 2000. Biodegradation of pyrene by the white rot fungus, Irpex lacteus. J. Microbiol. Biotechnol. 10, 344-348
  8. Kang, J.H., Y. Katayama, and F. Kondo. 2006. Biodegradation or metabolism of bisphenol A: From microorganisms to mammals. Toxicology 217, 81-90 https://doi.org/10.1016/j.tox.2005.10.001
  9. Kim, H.-Y. and H.-G. Song. 2000. Comparison of 2,4,6-trinitrotoluene degradation by seven strains of white rot fungi. Curr. Microbiol. 41, 317-320 https://doi.org/10.1007/s002840010142
  10. Kim, Y.J. and J.A. Nicell. 2006. Impact of reaction conditions on the laccase-catalyzed conversion of bisphenol A. Biores. Technol. 97, 1431-1442 https://doi.org/10.1016/j.biortech.2005.06.017
  11. Krishnan, A.V., P. Stathis, S.F. Permuth, L. Tokes, and D. Feldman. 1993. Bisphenol A: an estrogenic substance is released form polycarbonate flasks during autoclaving. Endocrinology 132, 2279-2286 https://doi.org/10.1210/en.132.6.2279
  12. Majcherczyk, A., C. Johannes, and A. Huttermann. 1998. Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb. Technol. 22, 335-341 https://doi.org/10.1016/S0141-0229(97)00199-3
  13. Morgan, P., S.T. Lewis, and R.J. Watkinson. 1991. Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl. Microbiol. Biotechnol. 34, 693-696 https://doi.org/10.1007/BF00167925
  14. Nishikawa, J.I., K. Saito, J. Goto, F. Dakeyama, M. Matsuo, and T. Nishihara. 1999. New screening methods for chemicals with hormonal activities using interaction of nuclear hormone receptor with coactivator. Toxicol. Appl. Pharmacol. 154, 76-93 https://doi.org/10.1006/taap.1998.8557
  15. Paszczynski, A. and R.L. Crawford. 1995. Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnol. Prog. 11, 368-379 https://doi.org/10.1021/bp00034a002
  16. Reddy, C.A. 1995. The potential for white-rot fungi in the treatment of pollutants. Curr. Opin. Biotech. 6, 320-328 https://doi.org/10.1016/0958-1669(95)80054-9
  17. Schafer, T., C. Lapp, C. Hanes, J. Lewis, J. Wataha, and G. Schuster. 1999. Estrogenicity of bisphenol A and bisphenol A demethacrylate in vitro. J. Biomed. Mater. Res. 45, 192-197 https://doi.org/10.1002/(SICI)1097-4636(19990605)45:3<192::AID-JBM5>3.0.CO;2-A
  18. Shin, E.-H., H.T. Choi, and H.-G. Song. 2007. Biodegradation of endocrine-disrupting bisphenol A by white rot fungus Irpex lacteus. J. Microbiol. Biotechnol. 17, 1147-1151
  19. Shore, L.S. and M. Shemesh. 2003. Naturally produced steroid hormones and their release into the environment. Pure Appl. Chem. 75, 1859-1871 https://doi.org/10.1351/pac200375111859
  20. Spivack, J., T.K. Leib, and J.H. Lobos. 1994. Novel pathway for bacterial metabolism of bisphenol A. J. Biol. Chem. 269, 7323-7329
  21. Tsutsumi, Y., T. Haneda, and T. Nishida. 2001. Removal of estrogenic activities of bisphenol A and nonylphenol by oxidation enzymes from lignin-degrading basidiomycetes. Chemosphere 42, 271-276 https://doi.org/10.1016/S0045-6535(00)00081-3