• Title/Summary/Keyword: Bipyridine

Search Result 108, Processing Time 0.02 seconds

Luminescence Quenching of Tris(2,2'-bipyridine) Ruthenium(II) Complex by Viologens in Anionic Micellar and Polyelectrolyte Solutions: Variation with Alkyl Chain of Viologens

  • Park, Joon-Woo;Suk, Mi-Yeon;Ahn, Byung-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.552-557
    • /
    • 1990
  • Luminescence quenching reactions of photoexcited tris(2,2'-bipyridine)ruthenium (Ⅱ) complex cation, $Ru(bpy)_3\;^{2+}$, by dialkylviologens (dimethyl, dioctyl, dibenzyl, methyloctyl, methyldodecyl, and methylbenzyl) were studied in sodium dodecylsulfate (SDS), poly(styrenesulfonate) (PSS), and poly(vinylsulfonate) (PVS) solutions. The relative quenching rate varies widely with the microheterogeneous media employed: the highest quenching rate is observed for methyldodecylviologen in homogeneous aqueous medium, dibenzylviologen in SDS and PVS solutions, and dimethylviologen in PSS solution; the lowest rate is found for dimethylviologen in homogeneous medium and SDS solution, methyldodecylviologen in PSS and PVS solutions. These results were interpreted in terms of reduction potential of viologens, affinity of $Ru(bpy)_3\;^{2+}$ and viologens to the microparticles, and the structures of the viologen-colloid complexes.

Syntheses and Reactivites with Olefins of Ruthenium(IV) Oxo/Ruthenium(II)-Aqua Complexes that Contain 2,6-Bis(N-pyrazolylpyridine)

  • Jo, Du-Hwan;Yeo, Hwan-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.682-686
    • /
    • 1993
  • The syntheses and reactivities with olefins of $[Ru^{II}(L_3)(L_2)OH_2]^{2+}$ $[L_3$= 2,6-bis(N-pyrazolyl)pyridine(bpp), 2,6-bis(3,5-dimethyl-N-pyrazolyl)pyridine $(Me_4bpp);\;L_2$= 2,2'-bipyridine(bpy), 4,4'-dimethyl-2,2'-bipyridine $(Me_2bpy)$] are described. Their spectral and redox properties in aqueous solution were investigated. Evidence for each one electron redox process for the $Ru^{IV}-Ru^{III}$ and $Ru^{III}-Ru^{II}$ couples has been obtained. Oxidation of $[Ru^{II}(bpp)(bpy)OH_2]^{2+}$ with $Ce^{IV}$ gave $[Ru^{IV}(bpp)(bpy)O]^{2+}$. The $[Ru^{IV}$= 0 complex is paramagnetic $({\mu}_{eff}=2.82)$ and the complexes $[Ru(L_3)(L_2)OH_2]^{2+}$ are robust catalysts for the oxidation of styrene, cyclohexene, and cyclooctene with cooxidant such as NaOCl. Product distributions and selectivities are discussed by varying the number of the substituted-methyl group in the ring.

Anion Effects on Crystal Structures of CdII Complexes Containing 2,2'-Bipyridine: Photoluminescence and Catalytic Reactivity

  • Park, Hyun-Min;Hwang, In-Hong;Bae, Jeong-Mi;Jo, Young-Dan;Kim, Cheal;Kim, Ha-Yeong;Kim, Young-Mee;Kim, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1517-1522
    • /
    • 2012
  • Anion effects on structures of $Cd^{II}$ complexes containing 2,2'-bipyridine (2,2'-bpy) ligands have been studied, and compared with $Zn^{II}$-(2,2'-bpy) complexes. For each anion, different structures have been obtained in both $Zn^{II}$-(2,2'-bpy) and $Cd^{II}$-(2,2'-bpy). Polymeric structures of $Cd^{II}$-2,2'-bpy complexes can be produced by hydrogen bonding interactions as shown in $Zn^{II}$-2,2'-bpy complexes. In addition, the bigger size of a $Cd^{II}$ ion gives higher coordination numbers forming variety of structures, and it makes that chlorides can act as bridging ligands to form a one-dimensional structure. The compound $\mathbf{5}$ catalyzed efficiently the transesterification of a variety of esters with methanol, while the rest of the compounds have displayed very slow conversions. In addition, the emission bands of complexes $\mathbf{1}$, $\mathbf{2}$, $\mathbf{4}$, and $\mathbf{6}$ are blue-shifted compared to the corresponding ligand 2,2'-bpy, whereas $\mathbf{3}$ and $\mathbf{5}$ showed the similar emission observed for the ligand.

Selective Metal Ion Sensing of Bipyridine-Bisterpyridine containing Fluorescent Dyes (다중 피리딘 구조를 가지는 형광염료의 금속 이온 반응성에 대한 연구)

  • Zo, Hye Jin;Kim, Arong;Jeong, Sooyeon;Park, Jong S.
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.254-261
    • /
    • 2013
  • In this study, we synthesized a new fluorescent polypyridyl dye 2 containing a 2,2'-bipyridine in the center and two 2,2':6',2"-terpyridines at both ends. When exposed to various metal ions, the dye 2 showed selective fluorescence responses. In the presence of $Cu^{2+}$ and $Ni^{2+}$, it exhibited a highly effective fluorescence quenching, leading to large $K_{sv}$ values of up to $10^5$. In response to most other metal ions including $Al^{3+}$, in contrast, its fluorescence changes little, showing a small Ksv value at $10^2$. Meanwhile, the compound 2 revealed a differentiated fluorescence response to $Zn^{2+}$, which is evidenced by a large red shift of > 100 nm. Such a red shift from the ion binding is attributed to the planarization of the bipyridyl unit extending the effective conjugation length in conjunction. A polypyridyl compound will find important usefulness in chemosensor application due to its selective binding to metal ions. Subsequent research concerned with modified derivatives is currently going on, as a way to provide high solubility even after metal-complexing.

Investigation of the Scanning Tunneling Microscopy Image, the Stacking Pattern and the Bias-voltage Dependent Structural Instability of 2,2'-Bipyridine Molecules Adsorbed on Au(111) in Terms of Electronic Structure Calculations

  • Suh, Young-Sun;Park, Sung-Soo;Kang, Jin-Hee;Hwang, Yong-Gyoo;Jung, D.;Kim, Dong-Hee;Lee, Kee-Hag;Whangbo, M.-H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.438-444
    • /
    • 2008
  • A self-assembled monolayer of 2,2'-bipyridine (22BPY) molecules on Au(111) underwent a structural phase transition when the polarity of a bias voltage was switched in scanning tunneling microscopy (STM) experiments. The nature of two bright spots representing each 22BPY molecule on Au(111) in the high-resolution STM images was identified by calculating the partial density plots for a monolayer of 22BPY molecules adsorbed on Au(111) using tight-binding electronic structure calculations. The stacking pattern of the chains of 22BPY molecules on Au(111) was explained by examining the intermolecular interactions between the 22BPY molecules based on first principles electronic structure calculations for a 22BPY dimer, (22BPY)2. The structural instability of the 22BPY molecule arrangement caused by a change in the bias voltage switch was investigated by estimating the adsorbate-surface interaction energy using a point-charge approximation for Au(111).

Determination of Uric Acid by Chemiluminescence Measurement Using Tris(2,2'-bipyridine)ruthenium(II)-Octylphenylpolyglycol Ether System

  • Kim, Young-Sang;Park, Jeung-Hee;Choi, Yoon-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1177-1181
    • /
    • 2004
  • The determination of uric acid in urine samples was studied by a chemiluminescence measurement using tris (2,2'-bipyridine)ruthenium(II)-octylphenylpolyglycolether [Ru$(bpy)_3^{2+}$ -OPE] system. The oxidized uric acid by Ce(IV) excited Ru$(bpy)_3^{2+}$ to emit a chemiluminescence in this system so that the intensity was stoichio-metrically dependent upon the concentration of uric acid. In a reaction cell, a luminescent reagent, oxidant, surfactant and sulfuric acid were flowed into and mixed with a taken sample. Experimental conditions were optimized to obtain the maximum intensity of chemiluminescence. Each reactant solution of more than the following concentration gave a good result: $2\;{\times}\;10^{?4}$ M Ru$(bpy)_3^{2+}$ , 0.01 M Ce(IV), 6% OPE, and 0.33 M $H_2SO_4$. Any interferences were not shown in this process by the investigation of concomitant constitutes such as albumin, creatine, lactic acid, glucose, urea, $Cl^?,\; Mg^{2+},\;Ca^{2+}$ and so on. The linearity of a calibration curve was good with r = 0.998, the relative standard deviation of the slope was 3.3% and the detection limit was 5.6ng/mL. The recoveries of 80 to 91% were obtained from the standard spiked samples. The values were little bit low, but this procedure could be considered to be reliable for the determination of trace uric acid in urine samples.

Comparative Study of Emission Quenching of Tris(${\alpha},{\alpha}'$-diimine)-Ruthenium(II) Complexes in Homogeneous and Sodium Dodecyl Sulfate Micellar Solutions

  • Park, Joon-Woo;Nam, Eun-Jin;Ahn, Byung-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.686-691
    • /
    • 1991
  • Emission quenching of photoexcited tris(${\alpha},{\alpha} '$-diimine)-ruthenium(II) complex cations, $RuL_3^{2+}$ (L: 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine; 4,4'-diphenyl-2,2'-bipyridine; 1,10-phenanthroline; 5-methyl-1,10-phenanthroline; 5,6-dimethyl-1,10-phenanthroline or 4,7-diphenyl-1,10-phenanthroline) by $Cu^{2+}$, dimethylviologen $(MV^{2+})$, nitrobenzene (NB), and oxygen was studied in aqueous homogeneous and sodium dodecyl sulfate (SDS) micellar solutions. The apparent bimolecular quenching rate constants $k_q$ were determined from the quenching data and life-times of $^{\ast}RuL_3^{2+}$. In homogeneous media, the quenching rate was considerably slower than that for the diffusion-controlled reaction. The decreasing order of quenching activity of quenchers was $NB>O_2>MV^{2+}>Cu^{2+}$. The rate with $Cu^{2+}$ was faster as the reducing power of $^{\ast}RuL_3^{2+}$ is greater. On the other hand, the rates with NB and $O_2$ were faster as the ligand is more hydrophobic. This was attributed to the stabilization of encounter pair by van der Waals force. The presence of SDS enhanced the rate of quenching reactions with $Cu^{2+}$ and $MV^{2+}$, whereas it attenuated the quenching activity of NB and $O_2$ toward $RuL_3^{2+}$. The binding affinity of quenchers to SDS micelle and binding sites of the quenchers and $RuL_3^{2+}$ in micelle appear to be important factors controlling the micellar effect on the quenching reactions.

Electrochemical Detection of Uric Acid using Three Osmium Hydrogels (세개의 오스뮴 고분자를 이용한 요산의 전기화학적 측정방법)

  • Jeon, Won-Yong;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.2
    • /
    • pp.29-38
    • /
    • 2016
  • Screen printed carbon electrodes (SPCEs) with immobilized osmium-based hydrogel redox polymer, uricase and PEGDGE can be used to apply uric acid electrochemical detecting. The osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium compounds. The synthesized poly-osmium hydrogel complexes are described as PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dmo-bpy)_2Cl]^{+/2+}$. The different concentrations of uric acid were measured by cyclic voltammetry technique using enzyme-immobilized SPCEs. The prepared SPCEs using PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$ showed no interference from common physiologic interferents such as ascorbic acid (AA) or glucose. The resulting electrical currents at 0.33 V vs. Ag/AgCl displayed a good linear response with uric acid concentrations from 1.0 to 5.0 mM. Therefore, this approach allowed the development of a simple, point of care in the medical field, disposable electrochemical uric acid biosensor.