DOI QR코드

DOI QR Code

Selective Metal Ion Sensing of Bipyridine-Bisterpyridine containing Fluorescent Dyes

다중 피리딘 구조를 가지는 형광염료의 금속 이온 반응성에 대한 연구

  • Zo, Hye Jin (Department of Organic Material and Polymer Engineering, Dong-A University) ;
  • Kim, Arong (Department of Organic Material and Polymer Engineering, Dong-A University) ;
  • Jeong, Sooyeon (Nano Carbon Materials Research Center, Korea Electrotechnology Research Institute(KERI)) ;
  • Park, Jong S. (Department of Organic Material and Polymer Engineering, Dong-A University)
  • 조혜진 (동아대학교 유기재료고분자공학과) ;
  • 김아롱 (동아대학교 유기재료고분자공학과) ;
  • 정수연 (한국전기연구원 나노카본소재연구센터) ;
  • 박종승 (동아대학교 유기재료고분자공학과)
  • Received : 2013.11.04
  • Accepted : 2013.12.09
  • Published : 2013.12.27

Abstract

In this study, we synthesized a new fluorescent polypyridyl dye 2 containing a 2,2'-bipyridine in the center and two 2,2':6',2"-terpyridines at both ends. When exposed to various metal ions, the dye 2 showed selective fluorescence responses. In the presence of $Cu^{2+}$ and $Ni^{2+}$, it exhibited a highly effective fluorescence quenching, leading to large $K_{sv}$ values of up to $10^5$. In response to most other metal ions including $Al^{3+}$, in contrast, its fluorescence changes little, showing a small Ksv value at $10^2$. Meanwhile, the compound 2 revealed a differentiated fluorescence response to $Zn^{2+}$, which is evidenced by a large red shift of > 100 nm. Such a red shift from the ion binding is attributed to the planarization of the bipyridyl unit extending the effective conjugation length in conjunction. A polypyridyl compound will find important usefulness in chemosensor application due to its selective binding to metal ions. Subsequent research concerned with modified derivatives is currently going on, as a way to provide high solubility even after metal-complexing.

Keywords

References

  1. P. D. Beer and P. A. Gale, Anion Recognition and Sensing: The State of the Art and Future Perspectives, Angewandte Chemie International Edition, 40(3), 486(2001). https://doi.org/10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P
  2. J. N. Wilson and U. H. F. Bunz, Switching of Intramolecular Charge Transfer in Cruciforms: Metal Ion Sensing, J. of the American Chemical Society, 127(12), 4124(2005). https://doi.org/10.1021/ja050017n
  3. H. Kim, X. Li, and Y. A. Son, Synthesis of Chemosensor Based on Pyrene and Study for Its Sensing Properties Toward Fluoride Ion, Textile Coloration and Finishing(J. of Korea Soc. Dyers and Finishers), 25(3), 153(2013). https://doi.org/10.5764/TCF.2013.25.3.153
  4. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, Self-assembled Nanoscale Biosensors based on Quantum Dot FRET Donors, Nature Materials, 2(9), 630 (2003). https://doi.org/10.1038/nmat961
  5. M. Fojta, L. Havran, R. Kizek, and S. Billova, Voltammetric Microanalysis of DNA Adducts with Osmium Tetroxide, 2,2'-Bipyridine using a Pyrolytic Graphite Electrode, Talanta, 56(5), 867(2002). https://doi.org/10.1016/S0039-9140(01)00660-9
  6. C. Kaes, A. Katz, and M. W. Hosseini, Bipyridine: The Most Widely Used Ligand, A Review of Molecules Comprising at Least Two 2,2'-Bipyridine Units, Chemical Reviews, 100(10), 3553 (2000). https://doi.org/10.1021/cr990376z
  7. D. M. D. Souza, D. A. Leigh, M. Papmeyer, and S. L. Woltering, A Scalable Synthesis of 5,5-Dibromo-2,2-Bipyridine and Its Stepwise Functionalization via Stille Couplings, Nature Protocols, 7(10), 2022(2012). https://doi.org/10.1038/nprot.2012.122
  8. C. Goze, C. Sabatini, A. Barbieri, F. Barigelletti, and R. Ziessel, Ruthenium-Terpyridine Complexes with Multiple Ethynylpyrenyl or Ethynyltoluyl Subunits: X-ray Structure, Redox, and Spectroscopic Properties, Inorganic Chemistry, 46(18), 7341(2007). https://doi.org/10.1021/ic070149c
  9. F. S. Han, M. Higuchi, and D. G. Kurth, Metallo- Supramolecular Polymers Based on Functionalized Bis-terpyridines as Novel Electrochromic Materials, Advanced Materials, 19(22), 3928(2007). https://doi.org/10.1002/adma.200700931
  10. F. S. Han, M. Higuchi, and D. G. Kurth, Metallosupramolecular Polyelectrolytes Self-Assembled from Various Pyridine Ring-Substituted Bisterpyridines and Metal Ions: Photophysical, Electrochemical, and Electrochromic Properties, J. of the American Chemical Society, 130(6), 2073(2008). https://doi.org/10.1021/ja710380a
  11. V. Grosshenny, F. M. Romero, and R. Ziessel, Construction of Preorganized Polytopic Ligands via Palladium-Promoted Cross-Coupling Reactions, J. of Organic Chemistry, 62(5), 1491(1997). https://doi.org/10.1021/jo962068w
  12. R. Passalacqua, F. Loiseau, S. Campagna, Y. Q. Fang, and G. S. Hanan, In Search of Ruthenium(ii) Complexes Based on Tridentate Polypyridine Ligands that Feature Long-lived Room-Temperature Luminescence: The Multichromophore Approach, Angewandte Chemie International Edition, 42(14), 1607(2003).
  13. E. K. Pefkianakis, N. P. Tzanetos, and J. K. Kallitsis, Synthesis and Characterization of a Novel Vinyl-2,2-bipyridine Monomer and Its Homopolymeric/Copolymeric Metal Complexes, Chemistry of Materials, 20(19), 6254(2008). https://doi.org/10.1021/cm800911y
  14. C. Janiak, S. Deblon, H. P. Wu, M. J. Kolm, P. Klüfers, H. Piotrowski, and P. Mayer, Modified Bipyridines: 5,5'-Diamino-2,2'-bipyridine Metal Complexes Assembled into Multidimensional Networks via Hydrogen Bonding and ${\pi}-{\pi}$ Stacking Interactions, European J. of Inorganic Chemistry, 1999(9), 1507 (1999).
  15. A. Suzuki, Recent Advances in the Cross-coupling Reactions of Organoboron Derivatives with Organic Electrophiles 1995-1998, J. of Organometallic Chemistry, 576(1-2), 147(1999). https://doi.org/10.1016/S0022-328X(98)01055-9
  16. W. S. Yeap, S. Chen, and K. P. Loh, Detonation Nanodiamond: An Organic Platform for the Suzuki Coupling of Organic Molecules, Langmuir, 25(1), 185(2009). https://doi.org/10.1021/la8029787
  17. A. Papadopoulou, R. J. Green, and R. A. Frazier, Interaction of Flavonoids with Bovine Serum Albumin: A Fluorescence Quenching Study, J. of Agricultural and Food Chemistry, 53(1), 158(2005). https://doi.org/10.1021/jf048693g
  18. J. Wang, Y. Q. Fang, L. B. Merle, M. I. J. Polson, G. S. Hanan, A. Juris, F. Loiseau, and S. Campagna, The Multichromophore Approach: Prolonged Room Temperature Luminescence Lifetimes in RuII Complexes Based on Tridentate Polypyridine Ligands, Chemistry-A European J., 12(33), 8539(2006). https://doi.org/10.1002/chem.200600245
  19. E. C. Constable, 2,2':6',2''-Terpyridines: From Chemical Obscurity to Common Supramolecular Motifs, Chemical Society Reviews, 36(2), 246(2006).
  20. L. J. Fan, Y. Zhang, C. B. Murphy, S. E. Angell, M. F. L. Parker, B. R. Flynn, and W. E. Jones, Fluorescent Conjugated Polymer Molecular Wire Chemosensors for Transition Metal Ion Recognition and Signaling, Coordination Chemistry Reviews, 253(3-4), 410(2009). https://doi.org/10.1016/j.ccr.2008.03.008
  21. H. J. Zo, J. Y. Song, J. J. Lee, S. Velmathi, and J. S. Park, Highly Selective Response of Bipyridyl-Incorporated Acetyelene Dye for Zinc Acetate, Talanta, 112(1), 80(2013). https://doi.org/10.1016/j.talanta.2013.03.063