DOI QR코드

DOI QR Code

Electrochemical Detection of Uric Acid using Three Osmium Hydrogels

세개의 오스뮴 고분자를 이용한 요산의 전기화학적 측정방법

  • Jeon, Won-Yong (Department of Nanobiomedical Sciences and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University) ;
  • Choi, Young-Bong (Department of Chemistry, College of Natural Science, Dankook University)
  • 전원용 (단국대학교 나노바이오 의과학과) ;
  • 최영봉 (단국대학교 자연과학대학 화학과)
  • Received : 2016.03.21
  • Accepted : 2016.04.11
  • Published : 2016.05.31

Abstract

Screen printed carbon electrodes (SPCEs) with immobilized osmium-based hydrogel redox polymer, uricase and PEGDGE can be used to apply uric acid electrochemical detecting. The osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium compounds. The synthesized poly-osmium hydrogel complexes are described as PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dmo-bpy)_2Cl]^{+/2+}$. The different concentrations of uric acid were measured by cyclic voltammetry technique using enzyme-immobilized SPCEs. The prepared SPCEs using PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$ showed no interference from common physiologic interferents such as ascorbic acid (AA) or glucose. The resulting electrical currents at 0.33 V vs. Ag/AgCl displayed a good linear response with uric acid concentrations from 1.0 to 5.0 mM. Therefore, this approach allowed the development of a simple, point of care in the medical field, disposable electrochemical uric acid biosensor.

전기화학적 방법을 통한 요산 (Uric acid) 정량분석을 위해 수용성 고분자 (hydrogel polymer)를 배위시킨 오스뮴 고분자 화합물과 요산 산화효소 (Uricase), 가교를 위한 PEGDGE (poly(ethylene glycol) diglycidyl ether)가 혼합된 용액을 스크린 프린팅된 탄소 전극 (SPCEs) 위에 흡착하여 측정하였다. 수용성 오스뮴 고분자의 전위를 조절하기 위해 리간드인 피리딘링의 4번 위치에 다른 전기음성도의 작용기를 갖는 오스뮴 고분자 화합물을 합성하였다. 합성된 오스뮴 고분자 화합물은 PAA-PVI (Poly(acrylic acid)-poly(vinyl imidazole)-$[osmium(4,4^{\prime}-dichloro-2,2^{\prime}-bipyridine)_2Cl]^{+/2+}$), PAA-PVI-$[osmium(4,4^{\prime}-dimethyl-2,2^{\prime}-bipyridine)_2Cl]^{+/2+}$, PAA-PVI-$[osmium(4,4^{\prime}-dimethoxy-2,2^{\prime}-bipyridine)_2Cl]^{+/2+}$이다. 제작된 효소전극은 순환전압전류법 (cyclic voltammetry)을 통해 uric acid에 의한 오스뮴 고분자 화합물들의 산화 촉매 전류(oxidation catalytic current)를 측정하여 uric acid의 농도를 정량적으로 분석할 수 있었다. 오스뮴 고분자 화합물들 중 0.215 V의 산화환원 전위를 갖는 $PAA-PVI-[Os(dme-bpy)_2Cl]^{+/2+}$ (PAA-PVI-osmium$(4,4^{\prime}-dimethyl-2,2^{\prime}-bipyridine)_2Cl$]$^{+/2+}$) 화합물을 이용하여 대표적인 간섭물질인 아스코르브산 (AA)과 포도당 (glucose)의 산화 신호의 간섭효과를 피할 수 있었다. 이를 이용하여 제작된 전극은 0.33 V 전위에서 다양한 농도의 uric acid (1.0, 1.5, 2.0, and 5.0 mM)의 전류를 측정한 결과 $r^2=0.9986$의 좋은 선형성을 갖는 것을 확인하였다. 이는 복잡하지 않은 간단한 방법과 일회용의 전극을 사용하기 때문에 현장현시 검사 (point of care; POC)에 적합한 요산측정용 바이오센서로서의 가능성을 확인 할 수 있었다.

Keywords

References

  1. W. Arneson and J. Brickell, 'Clinical Chemistry: A Laboratory Perspective' F. A. Davis Company, Philadelphia, USA, (2007).
  2. I. Grabowska, M. Chudy, A. Dybko, and Z. Brzozka, 'Uric acid determination in a miniaturized flow system with dual optical detection' Sens. Actuators B., 130, 508 (2008). https://doi.org/10.1016/j.snb.2007.09.051
  3. C. R. Raj and T. Ohsaka, 'Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol' J. Electroanal. Chem., 540, 69 (2003). https://doi.org/10.1016/S0022-0728(02)01285-8
  4. P. E. Erden and E. Kilic, 'A review of enzymatic uric acid biosensors based on amperometric detection' Talanta, 107, 312 (2013). https://doi.org/10.1016/j.talanta.2013.01.043
  5. J. Ballesta-Claver, R. Rodriguez-Gomez, and L. F. Capitan-Vallvey, 'Disposable biosensor based on cathodic electrochemiluminescence of tris(2,2-bipyridine) ruthenium(II) for uric acid determination' Anal. Chim. Acta., 770, 153 (2013). https://doi.org/10.1016/j.aca.2013.01.045
  6. C. R. Raj, F. Kitamura, and T. Ohsaka, 'Square wave voltammetric sensing of uric acid using the self-assembly of mercaptobenzimisazole' Analyst, 9, 1155 (2002).
  7. P. Kannan and S. A. John, 'Determination of nanomolar uric and ascorbic acids usingenlarged gold nanoparticles modified electrode' Analytical Biochem., 386, 65 (2009). https://doi.org/10.1016/j.ab.2008.11.043
  8. F. Arslan, 'An amperometric biosensor for uric acid determination preparedfrom uricase immobilized in polyaniline-polypyrrole film' Sensors, 8, 5492 (2008). https://doi.org/10.3390/s8095492
  9. A. K. Bhargava, H. Lal, and C. S. Pundir, 'Discrete analysis of serum uric acid with immobilized uricase and peroxidase' J. Biochem. Biophys. Methods, 39, 125 (1999). https://doi.org/10.1016/S0165-022X(99)00007-X
  10. J. Galba' n, Y. Andreu, M. J. Almenara, S. Marcos, and J. R. Castillo, 'Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase' Talanta, 54, 847 (2001). https://doi.org/10.1016/S0039-9140(01)00335-6
  11. J. Perello, P. Sanchis, and F. Grases, 'Determination of uric acid in urine, saliva and calcium oxalate renal calculi by high-performance liquid chromatography/mass spectrometry' J. Chromatogr. B., 824, 175 (2005). https://doi.org/10.1016/j.jchromb.2005.07.024
  12. D. L. Rocha, and F. R. P. Rocha, 'A flow-based procedure with solenoid micro-pumps for the spectrophotometric determination of uric acid in urine' Microchem. J., 94, 53 (2010). https://doi.org/10.1016/j.microc.2009.08.010
  13. D.-K. Xu, L. Hua, Z.-M. Li, and H.-Y. Chen, 'Identification and quantitative determination of uric acid in human urine and plasma by capillary electrophoresis with amperometric detection' J. Chromatogr. B., 694, 461 (1997). https://doi.org/10.1016/S0378-4347(97)00141-2
  14. E. M. Strochkova, Ya. I. Turyan, I. Kuselman, and A. Shenhar, 'Simultaneous voltammetric determination of uric and ascorbic acids in urine' Talanta, 44, 1923 (1997). https://doi.org/10.1016/S0039-9140(97)00087-8
  15. J. B. Jia, B. Q. Wang, A. G. Wu, G. G. Li, Z. Cheng, and S. J. Dong, 'A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network' Anal. Chem., 74, 2217 (2002). https://doi.org/10.1021/ac011116w
  16. A. L. Ghindilis, P. Atanasov, and E. Wilkins, 'Enzyme catalyzed direct electron transfer: fundamentals and analytical applications' Electroanalysis, 9, 661 (1997). https://doi.org/10.1002/elan.1140090902
  17. R. M. A. Tehrani, and S. A. Ghani, 'Voltammetric analysis of uric acid by zinc-nickel nanoalloy coated composite graphite' Sens. Actuators B, 145, 20 (2010). https://doi.org/10.1016/j.snb.2009.11.001
  18. S. B. Revin, and S. A. John, 'Electropolymerization of 3-amino-5-mercapto-1, 2, 4-triazole on glassy carbon electrode and its electrocatalytic activity towards uric acid' Electrochim. Acta, 56, 8934 (2011). https://doi.org/10.1016/j.electacta.2011.07.125
  19. Y. Li, G. Ran, W. J. Yi, H. Q. Luo, and N. B. Li, 'A glassy carbon electrode modified with graphene and poly (acridine red) for sensing uric acid' Microchim. Acta, 178, 115 (2012).
  20. S. A. John, 'Simultaneous determination of uric acid and ascorbic acid using glassy carbon electrodes in acetate buffer solution' J. Electroanal. Chem., 579, 249 (2005). https://doi.org/10.1016/j.jelechem.2005.02.012
  21. Y. Cui, C. Yang, W. Pu, M. Oyama, and J. Zhang, 'The influence of gold nanoparticles on simultaneous determination of uric acid and ascorbic acid' Anal. Lett., 43, 22 (2010).
  22. F. Sekli-Belaidi, P. Temple-Boyer, and P. Gros, 'Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids' J. Electroanal. Chem., 647, 159 (2010). https://doi.org/10.1016/j.jelechem.2010.06.007
  23. Y. Zhao, X. Yang, W. Lu, H. Liao, and F. Liao 'Uricase based methods for determination of uric acid in serum,' Microchimica Acta, 164, 1 (2009). https://doi.org/10.1007/s00604-008-0044-z
  24. T. Tatsuma and T. Watanabe, 'Oxidase:peroxidase bilayer-modified electrodes as sensors for lactate, pyruvate, cholesterol and uric acid,' Anal. Chim. Acta, 242, 85 (1991). https://doi.org/10.1016/0003-2670(91)87050-H
  25. M. Nanjo and G. G. Guilbault, 'Enzyme electrode sensing oxygen for uric acid in serum and urine' Anal. Chem., 46, 1769 (1974). https://doi.org/10.1021/ac60348a058
  26. S. Uchiyama, H. Shimizu, and Y. Hasebe, 'Chemical amplification of uric acid sensor responses by dithiothreitol' Anal. Chem., 66, 1873 (1991).
  27. X. Wang, T. Hagiwara, and S. Uchiyama, 'Immobilization of uricase within polystyrene using polymaleimidostyrene as a stabilizer and its application to uric acid sensor' Analytica Chimica Acta, 587, 41 (2007). https://doi.org/10.1016/j.aca.2007.01.025
  28. K. Moore, N. Vizzard, C. Coleman, J. McMahon, R. Hayes, and C. J. Thompson, 'Extreme altitude mountaineering and type 1 diabetes: the diabetes federation of ireland kilimanjaro expedition' Diabet Med., 18, 749 (2001). https://doi.org/10.1046/j.0742-3071.2001.00568.x
  29. B. A. Gregg and A. Heller, 'Redox polymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes' J. Phys. Chem., 95, 5976 (1991). https://doi.org/10.1021/j100168a047
  30. S. Kuwabata, T. Nakaminami, S. Ito, and H. Yoneyama, 'Preparation and properties of amperometric uric acid sensors' Sens. Actuators B, 52, 72 (1998). https://doi.org/10.1016/S0925-4005(98)00258-5
  31. J. Motonaka, K. Miyata, and L. R. Faulkner, 'Micro enzyme-sensor with osmium complex and a porous carbon for measuring uric acid' Analytical Letters, 27, 1 (1994). https://doi.org/10.1080/00032719408006342
  32. C. W. Liao, J. C. Chou, T. P. Sun, S. K. Hsiung, and J. H. Hsieh, 'Preliminary investigations on a new disposable potentiometric biosensor for uric acid' IEEE Trans. Biomed. Eng., 53, 1401 (2006). https://doi.org/10.1109/TBME.2006.875720
  33. R. F. Dutra, K. A. Moreira, M. I. P. Oliveira, A. N. Araujo, M. C. B. S. Montenegro, J. L. L. Filho, and V. L. Silva, 'An inexpensive biosensor for uric acid determination in human serum by flow-injection analysis' Electroanalysis, 17, 701 (2005). https://doi.org/10.1002/elan.200403142
  34. K. Yamamoto, H. Zeng, Y. Shen, M. M. Ahmed, and T.Kato, 'Evaluation of an amperometric glucose biosensor based on a ruthenium complex mediator of low redox potential' Talanta, 66, 1175 (2005). https://doi.org/10.1016/j.talanta.2005.01.036
  35. P. E. A. Ribeiro, C. L. Donnici, and E. N. Santos, 'Cationic rhodium(I) complexes containing 4,4'-disubstituted 2,2'-bipyridines: A systematic variation on electron density over the metal centre' J. Organometal. Chem., 691, 2037 (2006). https://doi.org/10.1016/j.jorganchem.2005.12.049
  36. T. D. Lumley-Woodyear, P. Rocca, J. Lindsay, Y. Dror, A. Freeman, and A. Heller, 'Polyacrylamide-based redox polymer for connecting redox centers of enzymes to electrodes' Anal. Chem., 67, 1332 (1995) https://doi.org/10.1021/ac00104a006
  37. S. M. Zakeeruddin, D. M. Fraser, M. K. Nazeeruddin, and M. Gratzel, 'Towards mediator design: characterization of tris-(4,4'-substituted-2,2'-bipyridine) complexes of iron(II), ruthenium(II) and osmium(II) as mediators for glucose oxidase of aspergillus niger and other redox proteins' J. Electroanal. Chem., 337, 253 (1992). https://doi.org/10.1016/0022-0728(92)80542-C
  38. Y. B. Choi, J. M. Lee, and H. H. Kim, 'Synthesis of a new cathode redox polymer for high performance in biofuel cells' Bull. Korean Chem. Soc., 35, 2803 (2014). https://doi.org/10.5012/bkcs.2014.35.9.2803
  39. G. Binyamin, J. Cole, and A. Heller, 'Mechanical and electrochemical characteristics of composites of wired glucose oxidase and hydrophilic graphite' J. of the Electrochemical Society, 147, 2780 (2000). https://doi.org/10.1149/1.1393606
  40. H. H. Kim, Y. B. Choi, and G. S. Tae, 'Synthesis of several osmium redox complexes and their electrochemical characteristics in biosensor' J. of the Korean Electrochemical Society, 11, 176 (2008). https://doi.org/10.5229/JKES.2008.11.3.176
  41. Y. Hu, F. He, A. Ben, and C. Chen, 'Synthesis of hollow Pt-Ni-graphene nanostructures for nonenzymatic glucose detection' J. of Electroanalytical Chemistry, 726, 55 (2014). https://doi.org/10.1016/j.jelechem.2014.05.012
  42. H. Guo, Z. Huang, Y. Zheng, and S. Weng, 'Electrodeposition of nickel nanoparticles modified glassy carbon electrode for nonenzymatic glucose biosensing' Int. J. Electrochem. Sci., 10, 10703 (2015).
  43. M. Li, X. Bo, Z. Mu, Y. Zhang, and L. Guo, 'Electrodeposition of nickel oxide and platinum nanoparticles on electrochemically reduced graphene oxide film as a nonenzymatic glucose sensor' Sens. Actuators B, 192, 261 (2014). https://doi.org/10.1016/j.snb.2013.10.140