• Title/Summary/Keyword: Biphasic reaction

Search Result 70, Processing Time 0.019 seconds

Synthesis and Characterization of the New Functional Polymer ―Synthesis of Polymer Containing Phosphorus― (새로운 기능성 고분자의 합성 및 그 특성에 관한 연구(I) ―인 함유 고분자의 합성―)

  • Moon, Byeong Hwa;Son, Tae Won;Lim, Sang Kyn;Koo, Kang
    • Textile Coloration and Finishing
    • /
    • v.8 no.4
    • /
    • pp.4-10
    • /
    • 1996
  • Poly(4-morphonylphosphonate of bisphenol A) (PMPB) was synthesized by the interfacial polymerization of phosphonic dichloride, 4-morphonyl (PDCM) and bisphenol A in an aqueous-organic biphasic system. Synthesized polymer was found to be PMPB by using EA, FT-IR and $^{1}$H-NMR. Prepared PMPB had different values of molecular weight depending on the solubility in the organic phase: the higher the solubility, the higher the molecular weight. PMPB is amorphous and its thermal decomposition temperature is about 35$0^{\circ}C$. PMPB is congenial to application to polypropylene by blending because of no reaction with polypropylene.

  • PDF

Kinetics and Mechanism of the Aminolyses of Bis(2-oxo-3-oxazolidinyl) Phosphinic Chloride in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3218-3222
    • /
    • 2013
  • The aminolyses, anilinolysis and pyridinolysis, of bis(2-oxo-3-oxazolidinyl) phosphinic chloride (1) have been kinetically investigated in acetonitrile at 55.0 and $35.0^{\circ}C$, respectively. For the reactions of 1 with substituted anilines and deuterated anilines, a concerted SN2 mechanism is proposed based on the selectivity parameters and activation parameters. The deuterium kinetic isotope effects ($k_H/k_D$) invariably increase from secondary inverse to primary normal as the aniline becomes more basic, rationalized by the transition state variation from a backside to a frontside attack. For the pyridinolysis of 1, the authors propose a stepwise mechanism with a rate-limiting step change from bond breaking for more basic pyridines to bond formation for less basic pyridines based on the selectivity parameters and activation parameters. Biphasic concave upward free energy relationship with X is ascribed to a change in the attacking direction of the nucleophile from a frontside attack with more basic pyridines to a backside attack with less basic pyridines.

Kinetics and Mechanism of the Pyridinolysis of Dimethyl Isothiocyanophosphate in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2260-2264
    • /
    • 2012
  • The kinetics and mechanism of the pyridinolysis ($XC_5H_4N$) of dimethyl isothiocyanophosphate are investigated in acetonitrile at $55.0^{\circ}C$. The Hammett and Br$\ddot{o}$nsted plots for substituent X variations in the nucleophiles exhibit two discrete slopes with a break region between X = 3-Ac and 4-Ac. These are interpreted to indicate a mechanistic change at the break region from a concerted to a stepwise mechanism with a rate-limiting expulsion of the isothiocyanate leaving group from the intermediate. The relatively large ${\beta}x$ values imply much greater fraction of frontside nucleophilic attack TSf than that of backside attack TSb. The steric effects of the two ligands play an important role to determine the pyridinolysis rates of isothiocyanophosphates.

Kinetics and Mechanism of the Pyridinolysis of Benzyl Bromides in Dimethyl Sulfoxide

  • 홍성완;고한중;이혜황;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1172-1176
    • /
    • 1999
  • Nucleophilic substitution reaction of Y-benzyl bromide with X-pyridines are investigated in DMSO at 45.0℃. Biphasic rate dependence is observed on varying the substituents in the substrate (Y) as well as in the nucleophile (X). The two well-defined straight lines in the Hammett (ρy) and Bronsted ( βx) plots are interpreted to indicate the changes in transition-state structure, a decrease in bond cleavage as the substituent on the substrate is changed from electron-donors ( ρy < 0) to electron-acceptors ( ρy > 0), and an increase in the extent of bond formation with the corresponding changes of the substituent on the pyridine. A Jencks' type analysis of separate polar (ρ) and resonance (ρr) effects can also be accounted for by the change of the transition-state structure, not by the variable combination of polar and resonance effects.

Synthesis, Reactions and Catalytic Activities of Water Soluble Rhodium and Iridium-Sulfonated Triphenylphosphine Complexes. 1. Polymerization of Terminal Alkynes

  • 주광석;김상열;진종식
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1296-1301
    • /
    • 1997
  • Polymerization of terminal alkynes (phenlacetylene and 4-ethynyltoluene) catalyzed by water soluble rhodium (Ⅰ) complex, RhCl(CO)(TPPTS)2 (TPPTS=m-P(C6H4SO3Na)3) (1) selectively produces cis-transoid polymers at room temperature in homogeneous solution of H2O and MeOH as well as in biphasic solutions of H2O and CHCl3. The rate of polymerization is higher in H2O/MeOH than in H2O/CHCl3. The iridium analog, IrCl(CO)(TPPTS)2 (2) shows catalytic activity for the polymerization of phenylacetylene only at elevated temperature to give trans-polymers. The polymerization rate increases significantly when the trimethylamine N-oxide (Me3NO) was added to the reaction mixtures. The electronic absorption spectra of the cis-transoid polymers show three absorption bands whereas the trasn-polymers show only one absorption band. It seems that the electronic absorption bands depend on the configuration of the polymers.

Reaction Behavior of Li4+xTi5O12 Anode Material as Depth of Discharge

  • Cho, Woo-Suk;Song, Jun-Ho;Park, Min-Sik;Kim, Jae-Hun;Kim, Jeom-Soo;Kim, Young-Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.85-91
    • /
    • 2010
  • We have studied the origin of an additional plateau of $Li_{4+x}Ti_5O_{12}$ (LTO) observed at 0.7 V (vs. Li/$Li^+$). Some LTO has to be discharged down to below 1.0 V forming two-stage plateau (1.5 V and 0.7 V) in order to obtain most of capacity while others could achieve the same level of capacity at higher potential (1.0 V vs. Li/$Li^+$) forming one plateau (1.5 V). The particle size effect has been investigated as a possible reason of this. The 0.7 V plateau was gradually elongated with increasing the particle size. The structural variations and kinetic behaviors during discharge were carefully examined by in-situ XRD technique and OCV measurement. According to structural and electrochemical verifications, the kinetic limitation of $Li^+$ insertion is responsible primarily for the two-stage plateau which is related to the particle size of LTO rather than the formation of new intermediate phase during discharge. Herein, we propose a possible reaction model to elucidate this abnormal behavior of LTO below 1.0 V (Li/$Li^+$).

Nucleophilic Substitution Reactions of α-Bromoacetanilides with Benzylamines

  • Adhikary, Keshab Kumar;Kim, Chan-Kyung;Lee, Bon-Su;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.191-196
    • /
    • 2008
  • Kinetic studies of the reactions of a-bromoacetanilides [YC6H4NHC(=O)CH2Br] with substituted benzylamines (XC6H4CH2NH2) have been carried out in dimethyl sulfoxide at 35.0 oC. The Hammett plots for substituent (Y) variations in the substrate (log kN vs. sY) are biphasic concave upwards/downwards with breaks at Y = 4-Cl (sY = 0.23). The Hammett coefficients rY and the cross-interaction constant rXY (= +0.16) are positive for sY 0.23, while the rY values are positive/negative [rY > 0 for X = (4-MeO and 4-Me) and rY < 0 for X = (H, 4-Cl and 3-Cl)] and the rXY (= -1.51) value is negative for sY ³ 0.23. Based on these and other results, the benzylaminolyses of a-bromoacetanilides are proposed to proceed through rate-limiting expulsion of the bromide leaving group from a zwitterionic tetrahedral intermediate, T, with a bridged transition state for s Y 0.23, while the reaction proceeds through concerted mechanism with an enolate-like TS in which the nucleophile attacks the a-carbon for s Y ³ 0.23.

Condensable InP Quantum Dot Solids

  • Tung, Dao Duy;Dung, Mai Xuan;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.541-541
    • /
    • 2012
  • InP quantum dots capped by myristic acid (InP-MA QDs) were synthesized by a typical hot injection method using MA as stablizing agent. The current density across the InP-MA QDs thin film which was fabricated by spin-coating method is about $10^{-4}A/cm^2$ at the electric field of 0.1 MV/cm from I-V measurement on a metal-insulator-metal (MIM) device. The low conductivity of the InP-MA QDs thin film is interpreted as due to the long interdistances among the dots governed by the MA molecules. Therefore, replacing the MA with thioacetic acid (TAA) by biphasic ligand exchange was conducted in order to obtain TAA capped InP QDs (InP-TAA). InP-TAA QDs were designed due to: 1) the TAA is very short molecule; 2) the thiolate groups on the surface of the InP-TAA QDs are expected to undergo condensation reaction upon thermal annealing which connects the QDs within the QD thin film through a very short linker -S-; and 3) TAA provides better passivation to the QDs both in the solution and thin film states which minimizing the effect of surface trapping states.

  • PDF

Micro-Chemical Structure of Polyaniline Synthesized by Self-Stabilized Dispersion Polymerization

  • NamGoong, Hyun;Woo, Dong-Jin;Lee, Suck-Hyun
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.633-639
    • /
    • 2007
  • A variety of NMR techniques were applied to the micro-chemical structural characterization of polyanilines prepared via an efficient synthetic method in a self-stabilized dispersion medium in which the polymerization was conducted in a heterogeneous organic/aqueous biphasic system without any stabilizers. Here, the monomer and growing polymer chain were shown to function simultaneously as a stabilizer, imparting compatibility for the dispersion of the organic phase, and as a form of flexible template in an aqueous reaction medium. Polymerizations predicated on this concept generated polyanilines with a low defect content: solution state $^{13}C-NMR$ and solid $^{13}CDD/CP/MAS$ spectroscopy indicated that the synthesized HCPANi and its soluble derivative, HCPANi-t-BOC, evidenced distinctly different NMR spectra with fewer side peaks, as compared to conventionally prepared PANis, and the complete structural assignments of the observed NMR peaks could be determined via the combination of both 1D and 2D techniques. Ortho-linked defects in HCPANi were estimated to be as low as 7%, as shown by a comparison of the integration of the carbonyl carbon resonance peaks.

Formation of Bioactive Ceramic Foams by Polymer Pyrolysis and Self-Blowing (고분자 열분해와 자가발포를 이용한 생체활성 다공체의 제조)

  • Kwak, Dae-Hyun;Kim, Jin-Ho;Lee, Eun-Ju;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.412-417
    • /
    • 2011
  • Formation and characterization of hydroxyapatite-based porous ceramics derived from polymer pyroysis were investigated. Polymer based process is chosen for preparing porous hydroxyapatite-based ceramics having a high mechanical strength. The hydroxyapatite-based porous ceramic was prepared by a self-blowing process of a polymethylsiloxane with filler and pyrolyzed at above $1000^{\circ}C$. Biphasic material consisted of hydroxyapatite and CaO has been prepared by solid state reaction from calcium hydroxide($Ca(OH)_2$) and calcium hydrogen phosphate dihydrate($CaHPO_4{\cdot}2H_2O$) as a filler material. The influence of filler content on mechanical properties was evaluated. The change of crystalline phase, microstructure and mechanical properties were investigated and discussed.