DOI QR코드

DOI QR Code

Reaction Behavior of Li4+xTi5O12 Anode Material as Depth of Discharge

  • Cho, Woo-Suk (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Song, Jun-Ho (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Park, Min-Sik (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Kim, Jae-Hun (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Kim, Jeom-Soo (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Kim, Young-Jun (Advanced Batteries Research Center, Korea Electronics Technology Institute)
  • Received : 2010.12.13
  • Accepted : 2010.12.24
  • Published : 2010.12.30

Abstract

We have studied the origin of an additional plateau of $Li_{4+x}Ti_5O_{12}$ (LTO) observed at 0.7 V (vs. Li/$Li^+$). Some LTO has to be discharged down to below 1.0 V forming two-stage plateau (1.5 V and 0.7 V) in order to obtain most of capacity while others could achieve the same level of capacity at higher potential (1.0 V vs. Li/$Li^+$) forming one plateau (1.5 V). The particle size effect has been investigated as a possible reason of this. The 0.7 V plateau was gradually elongated with increasing the particle size. The structural variations and kinetic behaviors during discharge were carefully examined by in-situ XRD technique and OCV measurement. According to structural and electrochemical verifications, the kinetic limitation of $Li^+$ insertion is responsible primarily for the two-stage plateau which is related to the particle size of LTO rather than the formation of new intermediate phase during discharge. Herein, we propose a possible reaction model to elucidate this abnormal behavior of LTO below 1.0 V (Li/$Li^+$).

Keywords

References

  1. T. Ohzuku, A. Ueda and N. Yamamoto, J. Electrochem. Soc., 142, 1431 (1995). https://doi.org/10.1149/1.2048592
  2. K. Ariyoshi, R. Yamanoto and T. Ohzuku, Electrochim. Acta, 51, 1125 (2005). https://doi.org/10.1016/j.electacta.2005.05.053
  3. S. Scharner, W. Weppner and P. Schmid-Beurmann, J. Electrochem. Soc., 146, 857 (1999). https://doi.org/10.1149/1.1391692
  4. S. Panero, P. Reale, F. Ronci, B. Scrosati, P. Perfetti and V. R. Albertini, PCCP, 3, 845 (2001). https://doi.org/10.1039/b008703n
  5. F. Ronci, P. Reale, B. Scrosati, S. Panero, V. R. Albertini, P. Perfetti, M. di Michiel and J. M. Merino, J. Phys. Chem. B, 106, 3082 (2002). https://doi.org/10.1021/jp013240p
  6. W. Lu, I. Belharouak, J. Liu and K. Amine, J. Electrochem. Soc., 154, A114 (2007). https://doi.org/10.1149/1.2402117
  7. A. D. Robertson, H. Tukamoto and J. T. S. Irvine, J. Electrochem. Soc., 146, 3958 (1999). https://doi.org/10.1149/1.1392576
  8. S. Huang, Z. Wen, X. Zhu and Z. Lin, J. Power Sources, 165, 408 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.010
  9. K. C. Hsiao, S. C. Liao and J. M. Chen, Electrochim. Acta, 53, 7242 (2008). https://doi.org/10.1016/j.electacta.2008.05.002
  10. X. L. Yao, S. Xie, H. Q. Nian and C. H. Chen, J. Alloys Comp, 465, 375 (2008). https://doi.org/10.1016/j.jallcom.2007.10.113
  11. W. J. H. Borghols, M. Wagemaker, U. Lafont, E. M. Kelder and F. M. Mulder, J. Am. Chem. Soc., 131, 17786 (2009). https://doi.org/10.1021/ja902423e
  12. A. Van der Ven and M. Wagemaker, Electrochem. Commun. , 11, 881 (2009). https://doi.org/10.1016/j.elecom.2009.02.015
  13. C. Y. Ouyang, Z. Y. Zhong and M. S. Lei, Electrochem Commun., 9, 1107 (2007). https://doi.org/10.1016/j.elecom.2007.01.013
  14. L. Aldon, P. Kubiak, M. Womes, J. C. Jumas, J. O. Fourcade, J. L. Tirado, J. I. Corredor and C. P. Vicente, Chem. Mater. 16, 5721 (2004). https://doi.org/10.1021/cm0488837
  15. Z. Y. Zhong, C. Y. Ouyang, S. Q. Shi and M. S. Lei, Chem Phys Chem., 9, 2104 (2008). https://doi.org/10.1002/cphc.200800333

Cited by

  1. New high-capacity anode materials based on gallium-doped lithium titanate vol.26, pp.3, 2016, https://doi.org/10.1016/j.mencom.2016.05.005
  2. Density functional theory study of LiFeTiO 4 vol.313, 2016, https://doi.org/10.1016/j.jpowsour.2016.02.072
  3. Raman and FTIR spectroscopy study of LiFeTiO4 and Li2FeTiO4 vol.22, pp.11, 2016, https://doi.org/10.1007/s11581-016-1740-z
  4. Lithium Migration in Li4Ti5O12 Studied Using in Situ Neutron Powder Diffraction vol.26, pp.7, 2014, https://doi.org/10.1021/cm5002779
  5. In situ nickel/carbon coated lithium titanium oxide anode material with improved electrochemical properties vol.143, 2014, https://doi.org/10.1016/j.electacta.2014.08.017
  6. Reduction of Li4Ti5O12Powder Agglomeration by the Addition of Carbon Black during Solid-state Synthesis vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.63
  7. Comparison of LiVPO4F to Li4Ti5O12 as Anode Materials for Lithium-Ion Batteries vol.5, pp.17, 2013, https://doi.org/10.1021/am402132u