• Title/Summary/Keyword: Biotic Environmental

Search Result 200, Processing Time 0.027 seconds

Composition and Abundance of Wood-Boring Beetles Inhabited by Pine Trees

  • Park, Yonghwan;Jang, Taewoong;Won, Daesung;Kim, Jongkuk
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.189-196
    • /
    • 2019
  • Plants are consumed by a myriad of organisms that compete for resources. Direct interactions among multiple plant-feeding organisms in a single host can range for each species from positive to negative. Wood-boring beetle faces a number of biotic and abiotic constraints that interfere with the good prospects from the tree. Biotic factors, including arthropod pests and diseases, and abiotic factors, such as drought and water-logging, are the major constraints affecting the species. The present study aimed to provide basic data for analyzing forest health, identify the kinds of wood-boring beetles in the central part of Korea. Our second goal was to analyze the species composition and diversity of regional communities and to examine. A total of 10,461 individual wood-boring beetles belonging to 8 families and 50 species attracted to trap trees in the pine forests were recorded during the study period on study sites. The results of the analysis of collected species showed that the community structure on all study sites was similar. Seasonal occurrences of dominant wood-boring beetles (5 species) from each study site showed the highest number of all species, except for Siphalinus gigas in May, followed by a gradual decline, and the largest number of Siphalinus gigas appeared in June. The similarity index of species composition was relatively high, ranging from 0.75 to 0.90 for each study site.

Biogeochemical Activities of Microorganisms in Mineral Transformations: Consequences for Metal and Nutrient Mobility

  • Gadd, Geoffrey-M.;Burford, Euan-P.;Fomina, Marina
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.323-331
    • /
    • 2003
  • Bacteria and fungi are fundamental biotic components of natural biogeochemical cycles for metals and metalloids, and play important roles in dissolution, precipitation, oxidation and reduction processes. Some processes catalyzed by microorganisms also have important applications in environmental biotechnology in the areas of ore leaching and bioremediation.

Edge effects confirmed at the clear-cut area of Korean red pine forest in Uljin, eastern Korea

  • Jung, Song Hie;Lim, Chi Hong;Kim, A Reum;Woo, Dong Min;Kwon, Hye Jin;Cho, Yong Chan;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.41 no.10
    • /
    • pp.290-301
    • /
    • 2017
  • Background: Forest edges create distinctive ecological space as adjacent constituents, which distinguish between different ecosystems or land use types. These edges are made by anthropogenic or natural disturbance and affects both abiotic and biotic factors gradually. This study was carried out to assess edge effects on disturbed landscape at the pine-dominated clear-cut area in a genetic resources reserve in Uljin-gun, eastern Korea. This study aims to estimate the distance of edge influence by analyzing changes of abiotic and biotic factors along the distance from forest edge. Further, we recommend forest management strategy for sustaining healthy forest landscapes by reducing effects of deforestation. Results: Distance of edge effect based on the abiotic factors varied from 8.2 to 33.0 m. The distances were the longest in $Mg^{2+}$ content and total nitrogen, $K^+$, $Ca^{2+}$ contents, canopy openness, light intensity, air humidity, $Na^+$ content, and soil temperature followed. The result based on biotic factors varied from 6.8 to 29.5 m, coverage of tree species in the herb layer showed the longest distance and coverage of shrub plant in the herb layer, evenness, species diversity, total coverage of herb layer, and species richness followed. As the result of calculation of edge effect by synthesizing 26 factors measured in this study, the effect was shown from 11.0 m of the forest interior to 22.4 m of the open space. In the result of stand ordination, Rhododendron mucronulatum, R. schlippenbachii, and Fraxinus sieboldiana dominated arrangement of forest interior sites and Quercus mongolica, Vitis amurensis, and Rubus crataegifolius dominated spatial distribution of the open area plots. Conclusions: Forest interior habitat lies within the influence of both abiotic and biotic edge effects. Therefore, we need a forest management strategy to sustain the stability of the plant and further animal communities that depend on its stable conditions. For protecting forest interior, we recommend selective logging as a harvesting method for minimizing edge effects by anthropogenic disturbance. In fact, it was known that selective logging contributes to control light availability and wind regime, which are key factors affecting microclimate. In addition, ecological restoration applying protective planting for the remaining forest in the clear-cut area could contribute to prevent continuous disturbance in forest interior.

Effects of cutting and sowing seeds of native species on giant ragweed invasion and plant diversity in a field experiment

  • Byun, Chaeho;Choi, Ho;Kang, Hojeong
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.256-263
    • /
    • 2020
  • Background: Ambrosia trifida is a highly invasive annual plant, but effective control methods have not been proposed. Among various eradication methods, cutting is a simple measure to control invasive plants, and sowing seeds of native plants may effectively increase biotic resistance to invasion. In this study, we conducted a field experiment with two treatments: cutting and sowing seeds of six native or naturalized plants. Results: We found a significantly lower A. trifida abundance after cutting than in the control (77% decrease). Sowing seeds of native species did not provide any additional benefit for the control of A. trifida, but increased the importance values and diversity of other native vegetation. The abundance of A. trifida was negatively correlated with that of other plant taxa based on plant cover, biomass, and density. However, biotic resistance of sown plants was not effective to control invasion because A. trifida was so competitive. Conclusions: We concluded that cutting is an effective measure to control Ambrosia trifida while sowing seeds of native plants can increase native plant diversity.

Comparative analysis of liver transcriptome reveals adaptive responses to hypoxia environmental condition in Tibetan chicken

  • Yongqing Cao;Tao Zeng;Wei Han;Xueying Ma;Tiantian Gu;Li Chen;Yong Tian;Wenwu Xu;Jianmei Yin;Guohui Li;Lizhi Lu;Shuangbao Gun
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.28-38
    • /
    • 2024
  • Objective: Tibetan chickens, which have unique adaptations to extreme high-altitude environments, exhibit phenotypic and physiological characteristics that are distinct from those of lowland chickens. However, the mechanisms underlying hypoxic adaptation in the liver of chickens remain unknown. Methods: RNA-sequencing (RNA-Seq) technology was used to assess the differentially expressed genes (DEGs) involved in hypoxia adaptation in highland chickens (native Tibetan chicken [HT]) and lowland chickens (Langshan chicken [LS], Beijing You chicken [BJ], Qingyuan Partridge chicken [QY], and Chahua chicken [CH]). Results: A total of 352 co-DEGs were specifically screened between HT and four native lowland chicken breeds. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses indicated that these co-DEGs were widely involved in lipid metabolism processes, such as the peroxisome proliferator-activated receptors (PPAR) signaling pathway, fatty acid degradation, fatty acid metabolism and fatty acid biosynthesis. To further determine the relationship from the 352 co-DEGs, protein-protein interaction network was carried out and identified eight genes (ACSL1, CPT1A, ACOX1, PPARC1A, SCD, ACSBG2, ACACA, and FASN) as the potential regulating genes that are responsible for the altitude difference between the HT and other four lowland chicken breeds. Conclusion: This study provides novel insights into the molecular mechanisms regulating hypoxia adaptation via lipid metabolism in Tibetan chickens and other highland animals.

A Molecular Switch for the Induction of Resveratrol Biosynthesis in Grapes

  • Lee, Mi-Sook;Pyee, Jae-Ho
    • Natural Product Sciences
    • /
    • v.10 no.5
    • /
    • pp.248-251
    • /
    • 2004
  • Resveratrol has been reported to possess a variety of biological and pharmaceutical activities. Regardless of its beneficial effects on health, the amount of resveratrol in grapes is very low. In order to induce the resveratrol biosynthesis, the promoter region of a genomic fragment encoding the resveratrol synthase was isolated and a molecular switch was identified which provides us with defining biotic or abiotic inducers that transcriptionally up-regulate the gene expression involved in the resveratrol biosynthesis. We could successfully increase the amount of resveratrol in grapes up to 3-fold by using these environmental factors.

Macroinvertebrate Community Structure along Environmental Conditions in Ponds of Urban Parks, Korea

  • Kim, Myoung-Chul;Chun, Dong-Jun;Ro, Tae-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.198-205
    • /
    • 2008
  • Benthic macroinvertebrates were examined to elucidate community structures of a set of 9 shallow ponds from a total of 6 parks located in Seoul metropolitan area, Korea. The result showed that macroinvertebrates were diverse and abundant, and aquatic macrophyte provide habitat diversities in ponds. The differences among benthic macroinvertebrate community compositions seemed to be attributed to local biotic and abiotic interactions. We surveyed benthic macroinvertebrate, biotic (macrophyte), abiotic (turbidity, nutrient concentrations, conductivity, heavy metal concentration) and morphometric (area, depth) of the lentic systems. Generally, the benthic macroinvertebrates were dominated by Cloeon dipterum or Coenagrion sp.. Distribution of the aquatic macrophyte community was correlated with the species composition of macroinvertebrates. The result demonstrated a significant and positive relationship between habitat quality and macroinvertebrate composition.

Biotic and Abiotic Factors Affecting Homoharringtonine Contents of Cephalotaxus koreana Nakai (개비자나무의 homoharringtonine 함량에 영향을 미치는 생물 및 무생물적 환경인자)

  • Jung, Myung-Suk;Hyun, Jung-Oh;Lee, Uk;Baik, Eul-Sun
    • Korean Journal of Plant Resources
    • /
    • v.23 no.2
    • /
    • pp.172-178
    • /
    • 2010
  • This study was carried out to investigate abiotic and biotic environmental factors affecting homoharringtonine (HHT) contents of Cephalotaxus koreana, whereby, to provide basic information of high value-added industry production of HHT as a promising anti-cancer agent. For correlation between abiotic environmental factors (soil moisture, soil pH, habitat density and temperature) and HHT contents, the contents were highly correlated with soil moisture (0.77) and soil pH (-0.68). For multiple regression analysis of relationship between abiotic environmental factors (soil moisture and soil pH) and HHT contents, soil moisture appeared to be strongly affecting the contents relatively due to being significant at only its regression coefficient ($26.48^{***}$). For the effect of biotic environmental factors (damage index) affecting HHT contents, the contents was quadratic with equation of $H=278.23+1242D-398.87D^2$, also, damage index had strong effect on the contents. Finally, for the result of the most influencing an environmental factor on HHT contents, both damage index and soil moisture were suitable in second polynomial regression, also, damage index ($R^2=0.73^{***}$) was turned out to be more influencing factor than soil moisture ($R^2=0.67^{**}$) on HHT contents relatively. Therefore, we predict that HHT contents in the trees of Cephalotaxus koreana is produced as a chemical defense mechanism triggered by a stress-related damage of fungi or insects.

BIOGEOCHEMICAL ACTIVITIES OF MICROORGANISMS IN MINERAL TRANSFORMATIONS: CONSEQUENCES FOR METAL AND NUTRIENT MOBILITY

  • Gadd, Geoffrey M.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2002.10a
    • /
    • pp.39-61
    • /
    • 2002
  • Bacteria and fungi are fundamental biotic components of natural biogeochemical cycles for metals and metalloids and play important roles in dissolution, precipitation, oxidation and reduction processes. Some processes catalyzed by microorganisms also have important applications in environmental biotechnology in the areas of ore leaching and bioremediation.

  • PDF