• Title/Summary/Keyword: Biopolymer mixed soil

Search Result 7, Processing Time 0.02 seconds

Evaluation of critical tractive forces of vegetation mats enhanced with biopolymer mixed soil (바이오폴리머 혼합토와 결합된 식생매트의 한계 소류력 평가)

  • Lee, Du Han;Kim, Myounghwan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.167-179
    • /
    • 2020
  • Recently, new levee material has been developed to enhance natural soil strength and vegetation growth using biopolymer. In the study, critical tractive force of vegetated mats mixed with biopolymer mixed soil has been evaluated to apply the mixed soil to levee construction material. The mixed soil has been produced by mixing beta-glucan, clay, and sand. Full scale test bodies have been constructed with 3 cm thick of the mixed soil. Total 4 test bodies have been constructed and experimented. Critical tractive forces have been evaluated by observation and measurement of failure conditions and soil loss. Although performance of the vegetated revetments are affected by vegetation coverage conditions, the critical tractive forces are shown about 40 N/㎡ and the critical velocities are shown about 4 m/sec by full scale experiment. Erosion resistance is also enhanced by combination of root and net with mat materials.

Monitoring for Constructed Revetments Using Biopolymer Mixed Soil (바이오폴리머 배합토를 이용한 호안 조성과 모니터링)

  • Kim, Myounghwan;Lee, Du Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.645-653
    • /
    • 2021
  • Biopolymer is a general concept for high molecular compounds produced by living organisms. Among them, the xanthan and β-glucan, which are organic polymer mixture produced by micro-organisms, are mainly used to increase the viscosity of a substance. And diluting in water and mixing with sand or clay can increase compressive strength and shear strength. In this study, mixed soil prepared by mixing soil with xanthan and beta-glucan based biopolymers specially developed for the purpose of increasing soil strength was applied to the river bank revetment, and changes during winter were measured using ground LiDAR. As a result of analyzing winter changes in major sections using three-dimensional point cloud data obtained through ground LiDAR, there were no changes to the extent that it was difficult to confirm with the naked eye in the two sections coated with biopolymer blended soil. However, soil loss due to Rill erosion was confirmed in the natural embankment section where biopolymer blended soil was not used.

The Analysis of Effect of Biopolymer Treated Soils in Seed Spray Method in the River Embankment (제방 녹화공법에서 바이오폴리머 처리토의 효능 분석)

  • Seo, Seunghwan;Jin, Seungnam;Chang, Ilhan;Chung, Moonkyung
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.304-313
    • /
    • 2019
  • Biopolymer based on microbial β-glucan and xanthan gum is effective for vegetation and has a function of enhancing soil strength, which can be used as soil reinforcement and stabilization materials in river embankment. The purpose of this study is to verify the vegetation effect of the surface of levee by biopolymer with seed spraying method. Mixed soils with biopolymer were used to cover the surface of embankments. The strength is higher in biopolymer-treated soil and xanthan gum based biopolymer has advantage for quality control in field scale. In addition, the vegetation of F. arundinacea and L. perenne showed various reactions with types of biopolymers. Biopolymer has a positive effect on the vegetation of them. In contrast, root growth tended to decrease in biopolymer-treated soils. The results indicate that root growth is slow down due to increasing ability to retain water in biopolymer-treated soil. In order to apply biopolymer to river embankment, it is necessary to examine the effects of biopolymers on a wide range of plant species in river embankment.

Effects of β-glucan and Xanthan gum-based Biopolymers on Plant Growth and Competition in the Riverbank (제방 환경 조건에서 베타글루칸-잔탄검 계열 바이오폴리머가 식물 생장 및 경쟁에 미치는 영향)

  • Jeong, Hyungsoon;Shin, Haeji;Jang, Ha-young;Kim, Eunsuk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.208-217
    • /
    • 2020
  • A biopolymer based on microorganism-derived β-glucan and xanthan gum is being studied as a new eco-friendly material that stabilizes the riverbank slope, and also promotes vegetation growth. However, it is still inconclusive whether biopolymers have a positive effect on plant performance in the riverbanks which are subjected to various climatic factors and plant competitions. For a practical ecological evaluation of the biopolymers, their effect on plant growth promotion was studied in a natural environment. Considering the relationship between competition and plant community formation, the effects of biopolymers on competition were also investigated. For four plant species (Echinochloa crus-galli, Pennisetum alopecuroides, Leonurus japonicus, and Coreopsis lanceolata), the biopolymer effects under intra/interspecific competition were tested at the riverbank (20 m × 10 m) near Samjigyo Bridge in Damyang-gun, Jeollanam-do. A biopolymer powder was mixed with water and commercial soil following the manufacturer's recommendations. The soil mixed with the biopolymer was filled in a pot or applied to the surface of the commercial soil with a thickness of 3 cm. Across the competition treatments, the biopolymer treatment promoted root growth of the target plant species and decreased the specific leaf area. The total biomass and shoot dry weight of P. alopecuroides increased in response to the biopolymer treatment. The competition treatment decreased the total biomass and shoot dry weight compared to the case without competition. Notably, such a competitive effect was similar in all the biopolymer treatments. Thus, biopolymers, when mixed with soil, promote the growth of some plant species, but do not appear to affect the competitive ability of plants.

β-Glucan- and Xanthan gum-based Biopolymer Stimulated the Growth of Dominant Plant Species in the Korean Riverbanks (베타글루칸과 잔탄검 계열 바이오폴리머 신소재의 국내 하천 식물종에 대한 생육 촉진 영향)

  • Jeong, Hyungsoon;Jang, Ha-Young;Ahn, Sung-Ju;Kim, Eunsuk
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.3
    • /
    • pp.163-170
    • /
    • 2019
  • The civil engineering materials used to stabilize the slopes of new riverbanks have a great impact on the types and growth of vegetation introduced after the completion of construction procedure. Recently, microbial-derived, ${\beta}$-glucan- and xanthan gum-based biopolymers are attracting attention as an ecofriendly strengthening material of riverbanks that can possibly stimulate plant growth. This study aimed to assess ecological effects of biopolymer application on native plants in Korean riverbanks. In particular, since dominant plant species could shape characteristics of an ecosystem, we examined the effects of biopolymer on the dominant plant species in riverbanks. Overall, biopolymer did not affect seed germination rates of testing plant species. In contrast, plants grew more vigorously in the soil mixed with biopolymer compared to those in the control soil. The biomass of Echinochloa crus-galli especially increased around two times more in the biopolymer treatment. Plants produced heavier root biomass and leaves with larger specific leaf area, which possibly contributes to the tolerance of environmental stress like drought. These results suggest that biopolymers treated on river banks are expected to stimulate plant growth and increase stress tolerance of domestic dominant plant species.

A Study on the Erosion Resistance Performance of Biopolymer Mixed Soils According to Soil Types (토양 종류에 따른 바이오폴리머 혼합토의 침식저항 성능 연구)

  • Kim, Myounghwan;Lee, Du Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.221-221
    • /
    • 2021
  • 토양의 강도와 점성을 높여주는 바이오폴리머를 제방 호안에 도포하면 기존의 다른 호안 재료들과 마찬가지로 제방을 보호하는 것이 가능하다. 특히 바이오폴리머는 천연 토양과 혼합하여 사용하므로 다른 인공적인 호안재료들에 비해 생태적으로 유리하다. 하지만 바이오폴리머는 결합되어지는 토양의 점도, 공극률, 입도 등의 토양이 가지는 특성에 따라 성능이 변화하기 때문에 바이오폴리머를 이용한 혼한토를 제방 호안에 적용하기 위해서는 적절한 강도를 가지게 하는 토양을 선정해야 한다. 본 연구에서는 바이오폴리머를 마사토 및 황토 등과 결합하여 시험구를 설치하고 식생환경을 조성한 뒤 실규모 실험수로에서 수리 실험을 수행하여 바이오폴리머를 이용한 호안 공법의 침식 저항 성능을 평가하고 토양의 종류에 따라 성능을 비교하였다.

  • PDF

Assessment of Levee Slope Reinforced with Bio-polymer by Image Analysis (영상분석을 통한 바이오폴리머로 보강된 제방사면 안정성 해석)

  • Ko, Dongwoo;Kang, Joongu
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.258-266
    • /
    • 2019
  • This study was conducted to apply natural river technologies to levees and examine the results. The new eco-friendly bio-polymer was applied, a combination of eco-friendly biopolymers and soil, to levee slope to enhance durability and eco-friendliness and to establish reinforcement measures against unstable levees due to overtopping. A semi-prototype levee of 1 m in height, 3 m in width, with a 1:2 slope and 5 m length, was constructed at the Andong River Experiment Center. The bio-soil mixed with the biopolymer and the soil at an appropriate ratio was treated with a 5 cm thickness on the surface of levee to perform the stability evaluation according to overtopping. Using the pixel-based analysis technique using the image analysis program, the breached area of levee slope was calculated over time. As a result, the time for complete decay occurs more than 12 times than that of ordinary soil levee. Therefore, when the new substance is applied to the surface of levee, the decay delay effect appears to be high.