DOI QR코드

DOI QR Code

β-Glucan- and Xanthan gum-based Biopolymer Stimulated the Growth of Dominant Plant Species in the Korean Riverbanks

베타글루칸과 잔탄검 계열 바이오폴리머 신소재의 국내 하천 식물종에 대한 생육 촉진 영향

  • Jeong, Hyungsoon (School of Earth Sciences and Environmental Engineering, Gwanju Institute of Science and Technology) ;
  • Jang, Ha-Young (School of Earth Sciences and Environmental Engineering, Gwanju Institute of Science and Technology) ;
  • Ahn, Sung-Ju (Department of Bioenergy Science and Technology, Chonnam National University) ;
  • Kim, Eunsuk (School of Earth Sciences and Environmental Engineering, Gwanju Institute of Science and Technology)
  • 정형순 (광주과학기술원 지구환경공학부) ;
  • 장하영 (광주과학기술원 지구환경공학부) ;
  • 안성주 (전남대학교 바이오에너지공학과) ;
  • 김은석 (광주과학기술원 지구환경공학부)
  • Received : 2019.09.19
  • Accepted : 2019.09.26
  • Published : 2019.09.30

Abstract

The civil engineering materials used to stabilize the slopes of new riverbanks have a great impact on the types and growth of vegetation introduced after the completion of construction procedure. Recently, microbial-derived, ${\beta}$-glucan- and xanthan gum-based biopolymers are attracting attention as an ecofriendly strengthening material of riverbanks that can possibly stimulate plant growth. This study aimed to assess ecological effects of biopolymer application on native plants in Korean riverbanks. In particular, since dominant plant species could shape characteristics of an ecosystem, we examined the effects of biopolymer on the dominant plant species in riverbanks. Overall, biopolymer did not affect seed germination rates of testing plant species. In contrast, plants grew more vigorously in the soil mixed with biopolymer compared to those in the control soil. The biomass of Echinochloa crus-galli especially increased around two times more in the biopolymer treatment. Plants produced heavier root biomass and leaves with larger specific leaf area, which possibly contributes to the tolerance of environmental stress like drought. These results suggest that biopolymers treated on river banks are expected to stimulate plant growth and increase stress tolerance of domestic dominant plant species.

신설 제방의 사면 안정화를 위해 사용하는 토목 자재는 완공 이후 유입되는 식생의 종류 및 생장에 큰 영향을 미친다. 최근 미생물 유래 베타글루칸과 잔탄검 계열 바이오폴리머가 식물의 생육을 촉진시킬 수 있는 새로운 친환경 제방 사면 안정화 물질로 주목 받고 있다. 본 연구는 바이오폴리머 신소재의 생태성 평가를 목적으로, 특히 생태계 내에서 다수를 차지하는 우점 식물종들이 생태계의 특성을 크게 좌우하는 점에 주목하여, 바이오폴리머 신소재가 국내 하천에서 흔히 발견되는 자생 초본 식물 8종과 녹화용 식물 2종의 발아 및 생육에 미치는 영향을 시험하였다. 시험 식물종들의 종자 발아율은 바이오폴리머가 혼합된 토양의 영향을 받지 않았다. 반면 식물 생육은 바이오폴리머가 혼합된 토양에서 증가하였는데, 특히 돌피의 경우 약 2배정도의 총 생물량이 증가하였다. 식물 뿌리의 생육이 증가하는 경향을 보였고, 잎의 건중량 대비 엽면적이 증가하였다. 뿌리의 생육 증진과 잎의 건중량 대비 엽면적 증가가 환경 스트레스에 적응된 식물종들의 대표적 기능 형질인 점을 감안하면, 제방 사면에 처리된 바이오폴리머 신소재는 국내 하천 우점종들의 생육 및 환경 스트레스 저항성을 높일 것으로 예측된다.

Keywords

References

  1. An, J.H., Jeong, H. and Kim, E. 2018. Effects of the ${\beta}$-Glucan- and Xanthan gum-based biopolymer on the performance of plants inhabiting in the riverbank. Ecology and Resilient Infrastructure 5: 180-188. (in Korean) https://doi.org/10.17820/eri.2018.5.3.180
  2. Berendse, F. 1998. Effects of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry 42: 73-88. https://doi.org/10.1023/A:1005935823525
  3. Bittel, P. and Robatzek, S. 2007. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Current Opinion in Plant Biology 10: 335-341. https://doi.org/10.1016/j.pbi.2007.04.021
  4. Chang, Y.J., Lee, S., Yoo, M.A. and Lee, H.G. 2006. Structural and biological characterization of sulfatedderivatized oat ${\beta}$-glucan. Journal of Agricutural and Food Chemistry 54: 3815-3818. https://doi.org/10.1021/jf060243w
  5. Chang, I., Prasidhi, A.K., Im, J., Shin, H.D. and Cho, G.C. 2015. Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 253-254: 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006
  6. Chang, I., Im, J. and Cho, G.C. 2016. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability 8: 251-274. https://doi.org/10.3390/su8030251
  7. Dang, J.H., Cho, Y.H. and Lee, C.S. 2017. Effect of soil reinforcement on sheer strength by Pennisetum alopecuroides and Miscanthus sinensis roots on loamy sand at river banks. Journal of Korean Society of Environmental Restoration Technology 20: 79-91. (in Korean) https://doi.org/10.13087/kosert.2017.20.2.79
  8. Evette, A., Labonne, S., Rey, F., Liebault, F., Jancke, O. and Girel, J. 2009. History of bioengineering techniques for erosion control in rivers in Western Europe. Environmental Management 43: 972-984. https://doi.org/10.1007/s00267-009-9275-y
  9. Grime, J.P. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86: 902-910. https://doi.org/10.1046/j.1365-2745.1998.00306.x
  10. Kim, Y.H., Park, N.H., Jin, Y.H. and Kim, C. 2007. Development and application of evaluation technique for revetment for nature-friendly river improvement. Journal of Korea water resources association 40: 1007-1014. (in Korean) https://doi.org/10.3741/JKWRA.2007.40.12.1007
  11. Kim, G.T. and Um, T.W. 1995. A Study for the utilization of wild herbaceous species - effects of gibberellic acid treatment on seed germination. Korean Journal of Environment and Ecology 9: 56-61. (in Korean)
  12. Ko, D. and Kang, J. 2018. Experimental studies on the stability assessment of a levee using reinforced soil based on a biopolymer. Water 10: 1059-1060. https://doi.org/10.3390/w10081059
  13. Lee, Y.H., Byun, J.Y., Na, C.S., Kim, T.W., Kim, J.G. and Hong, S.H. 2015. Moisture sorption isotherms of four Echinochloa species seeds. Weed & Turfgrass Science 4:111-117. (in Korean) https://doi.org/10.5660/WTS.2015.4.2.111
  14. OECD. 2006. OECD guideline for the testing of chemicals. https://doi.org/10.1787/20745761.
  15. Peirez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H. and Jaureguiberry, P. 2013. New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany 61:167-234. https://doi.org/10.1071/BT12225
  16. R Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
  17. Schultz, R.C., Wray, P.H., Colleti, J.P., Isenhart, T.M., Rodrigues, C.A. and Juchl, A. 1997. Stewards of our streams: Buffer strip design, establishment and maintenance. Agriculture and Environment Extension Publications 216.
  18. Smith, M.D. and Knapp, A.K. 2003. Dominant species maintain ecosystem function with non-random species loss. Ecology Letters 6: 509-517. https://doi.org/10.1046/j.1461-0248.2003.00454.x
  19. Wilson, P.J., Thompson, K.E.N. and Hodgson, J.G. 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. The New Phytologist, 143: 155-162. https://doi.org/10.1046/j.1469-8137.1999.00427.x