Kim, Jae-Kon;Lee, Donmin;Park, Chunkyu;Lim, Eui Soon;Jung, Choong-Sub;Kim, Ki-Dong;Oh, Youngsam
한국신재생에너지학회:학술대회논문집
/
2011.05a
/
pp.174.1-174.1
/
2011
Biogas production and utilisation is an emerging alternative energy technology. Biogas is produced from the biological breakdown of organic matter through anaerobic digestion. Biogas can be utilized for various energy services such as heating, electricity generation and vehicle fuel. Especially, to be utilized as vehicle fuel, raw biogas needs to be upgraded, that is, mainly the removal of carbon dioxide to increase the methane content, up to more than 95% in some cases, similar to the composition of fossil-based natural gas. Biogas fuelled vehicles can reduce $CO_2$ emission by between 75% and 200% compared with fossil fuels. Biomethane development is largely driven by national initiative and predominately by concerns for national air pollution and waste management. Recently, biogas projects for vehicle fuels by some companies are ongoing and Korea government also announced investment to develop biogas as a transport fuel. Therefore, the aim of this study is to examine the feasibility of biomethane as a transport fuel in Korea. In this study, we investigated quality characteristics, quality standard and upgrading technology to use vehicle fuel of transport sector in Korea.
Kim, Jae-Kon;Lee, Don-Min;Park, Chun-Kyu;Yim, Eui-Soon;Jung, Choong-Sub;Kim, Ki-Dong;Oh, Young-Sam
New & Renewable Energy
/
v.7
no.3
/
pp.17-28
/
2011
Biogas production and utilization are an emerging alternative energy technology. Biogas is produced from the biological breakdown of organic matter through anaerobic digestion. Biogas can be utilized for various energy sectors such as space heating, electricity generation and vehicle fuel. Especially, to be utilized as vehicle fuel, raw biogas needs to be upgraded that is mainly the removal of carbon dioxide to increase the methane content up to more than 95 ~ 97 vol% in some cases, similar to the composition of fossil-based natural gas. Usage of Biogas as a fuel of vehicles have an effect of reducing $CO_2$ emission compared to fossil fuels. Biomethane which is produced by upgrading of biogas is regarded as a good alternative energy and usage of clean energy is encouraged to deal with air pollution and waste management as well as production of clean energy. Recently, biogas projects for vehicle fuel are newly being launched and Korea government have also announced a plan for investment to develop biogas as a transport fuel. In this study, it is aimed to examine the potential feasibility of biomethane as a transport fuel. As a results, the status of biomethane, quality standard, quality characteristics, and upgrading technology of biogas were investigated to evaluate of biogas as a vehicle fuel of transportation.
Journal of the Korea Organic Resources Recycling Association
/
v.29
no.1
/
pp.29-36
/
2021
In spite of the highest energy potential among all domestic organic solid wastes. the research on biogas production from cattle manure is limited. In particular, effects of organic content degradation and sawdust addition during storage on biomethane potential have never been investigated. In the present work, we investigated the change of organic content during storage of cattle manure under different temperatures (20℃ and 30℃), and its impact on biomethane potential and odor emissions. 90 days of investigation results showed that 10% of organics in terms of VS and COD were degraded at 20℃ during storage, while 30% were degraded at 30℃. This result impacted on biomethane potential, while 10-13% and 24% reduction were observed from beef and dairy cattle manure, respectively. The temperature also affected on CH4 and odor emissions during storage by 3.3-3.8 times and 29 times. The effect of sawdust on lowering down biomethane potential was found to be substantial, reducing 61-75% compared to the control.
Hydrogen production from biogas has received consistent attention due to the great potential to solve simultaneously the issues of energy demands and environmental problems. Practically, biomethane produced by purification/upgrading of biogas can be a good alternative to the natural gas which is a main reactant for a steam methane reforming process. Judging from the economic and environmental impacts, however, the steam biogas and dry reforming are considered to be more effective routes for hydrogen production because both processes do not require the carbon dioxide elimination step. Herein, we highlight recent studies of hydrogen production via reforming processes using biogas and effective applications for earlier commercialization.
Lee, Kwanyong;Chantrasakdakul, Phrompol;Kim, Daegi;Park, Jongjin;Choi, Jang-Seung;Park, Ki Young
Journal of Korean Society of Water and Wastewater
/
v.28
no.1
/
pp.55-60
/
2014
Food waste leachate (FWL) is a serious pollutant waste coming from the food waste recycling facilities in Korea. FWL has a high organic matter content and high COD to nitrogen (COD/N) ratio, which can disturb efficient methane production in the anaerobic digestion of FWL. In the present study a microalga, Clorella vulgaris (C.V), was used as co-substrate for the FWL anaerobic digestion in order to supply nutrients, decrease the COD/N ratio and increase its methane yield. Different co-digestion mixtures (COD/N ratios) were studied by using biochemical methane potential test and modified Gompertz equation for kinetic study. Mixed substrate of FWL and C. vulgaris in the co-digestion clearly showed more the biomethane yield than the sole substrates. The maximum methane production, 827.7 mL-$CH_4$/g-VS added, was obtained for COD/N ratio of 24/1, whereas the highest improvement of methane yield was found for COD/N ratio of 15/1.
Sudiarto, Sartika Indah Amalia;Choi, Hong Lim;Renggaman, Anriansyah
Journal of the Korea Organic Resources Recycling Association
/
v.23
no.4
/
pp.21-31
/
2015
The aim of this study is to determine the removal efficiency of total nitrogen and phosphorus from treated swine wastewater by Phragmites australis and Miscanthus sacchariflorus var Geode Uksae-1, and to determine its biomass total energy value and biomethane potential. Plants were grown with a bedding mixture either soil and sand or soil, sand, and bioceramic. Treeated swine wastewater with Total nitrogen (TN) and Total phosphorus (TP) of 222.78 mg/L and 66.11 mg/L, respectively, was utilized. The TN and TP removal is higher in the bio-ceramic-soil-sand bedding media treatment. The highest TN removal of 96.14% was performed by Miscanthus sacchariflorus var Geode Uksae-1, but the elemental analysis shows that Phragmites australis contains more nitrogen than Miscanthus sacchariflorus var Geode Uksae-1, indicating higher nitrogen uptake. The highest TP removal of 98.12% was performed by Phragmites australis. The cellulose content of the plant grown with the bioceramic-soil-sand bedding was approximately 3-6% higher than that of the plant grown in the soil-sand bedding. Different growing substrates may have an effect on the fiber content of plants. The biomethane potential of the produced biomass of the plants was between 57.01 and $99.25L-CH_4/kg$ VS. The lignin content is believed to inhibit the breakdown of plant biomass, resulting in the lowest methane production in the Phragmites australis grown in the soil-sand bedding media.
Anaerobic digestion(AD) has successfully been used for many applications that have conclusively demonstrated its ability to recycle biogenic wastes. AD has been successfully applied in industrial waste water treatment, stabilsation of sewage sludge, landfill management and recycling of biowaste and agricultural wastes as manure, energy crops. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is primarily composed of methane(CH4) and carbon dioxide(CO2) with smaller amounts of hydrogen sulfide(H2S) and ammonia(NH3), trace gases such as hydrogen(H2), nitrogen(N2), carbon monoxide(CO), oxygen(O2) and contain dust particles and siloxanes. The production and utilisation of biogas has several environmental advantages such as i)a renewable energy source, ii)reduction the release of methane to the atomsphere, iii)use as a substitute for fossil fuels. In utilisation of biogas, most of biogas produced from small scale plant e.g. farm-scale AD plant are used to provide as energy source for cooking and lighting, in most of the industrialised countries for energy recovery, environmental and safety reasons are used in combined heat and power(CHP) engines or as a supplement to natural. In particular, biogas to use as vehicle fuel or for grid injection there different biogas treatment steps are necessary, it is important to have a high energy content in biogas with biogas purification and upgrading. The energy content of biogas is in direct proportion to the methane content and by removing trace gases and carbon dioxide in the purification and upgrading process the energy content of biogas in increased. The process of purification and upgrading biogas generates new possibilities for its use since it can then replace natural gas, which is used extensively in many countries, However, those technologies add to the costs of biogas production. It is important to have an optimized purification and upgrading process in terms of low energy consumption and high efficiency giving high methane content in the upgraded gas. A number of technologies for purification and upgrading of biogas have been developed to use as a vehicle fuel or grid injection during the passed twenty years, and several technologies exist today and they are continually being improved. The biomethane which is produced from the purification and the upgrading process of biogas has gained increased attention due to rising oil and natural gas prices and increasing targets for renewable fuel quotes in many countries. New plants are continually being built and the number of biomethane plants was around 100 in 2009.
Journal of the Korea Organic Resources Recycling Association
/
v.27
no.1
/
pp.77-85
/
2019
Biogasification is a technology that uses organic wastes to reproduce as environmental fuels containing methane gas. Biogasification has attracted worldwide attention because it can produce renewable-energy and stable land treatment with prohibit from landfilling and ocean dumping of organic waste. Biomethane is produced by refining biogas. It is injected into natural gas pipeline or used transportation fuel such as cars and buses. 90 bio-gasification facilities are operating in 2016, and methane gas production is very low due to it is limited to organic wastes such as food waste, animal manure, and sewage sludge. There are seven domestic biomethane manufacturing facilities, and the use of high value-added such as transport fuels and city-gas through upgrading biogas should be expanded. On the other hand, the rapid biogasification of organic wastes in domestic resulted in frequent breakdowns of facilities and low efficiency problems. Therefore, the problem is improving as technical guidance, design and operational technical guidance is developed and field experience is accumulated. However, while improvements in biogas production are being made, there is a problem with low utilization. In this study, the problems of biomethane manufacturing facilities were identified in order to optimize the production and utilization of biogas from organic waste resources. Also, in order to present the design and operation guideline of the gas pretreatment and the upgrading process, we will investigate precision monitoring, energy balance and economic analysis and solutions for on-site problems by facility.
In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane ($CH_4$) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) ($CH_4$ NL $kg^{-1}$ VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC.
The Malaysian biogas upgrading technologies and policies were examined. In Malaysia, the regulation of palm oil mill effluent (POME) has been enforced to reduce the biochemical oxygen demand to 20 ppm and the biogas capture in the palm oil mills have been recently enforced for renewable energy. A huge amount of organic waste is produced from POME, and 80 million tons from palm oil trees, every year. Due to the renewable energy trends, the Malaysian government is modifying the use of biogases as fuels in favor of their conversion into compressed natural gas (CNG) and other chemicals; various green policies are being promoted because of many advantages of the organic substances. The Korean policies for biogas are a good model for exporting environmental plants after upgrading the digestion and purification technologies. Therefore, this article introduces the current status of POME and biogas production in Malaysia, it could encourage creating a new market for biomethane.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.