• Title/Summary/Keyword: Biomechanical

Search Result 961, Processing Time 0.035 seconds

Biomechanical and Physiological Comparative Analysis of the Single-Radius Knee Arthroplasty Systems and Multi-Radius Knee Arthroplasty Systems (무릎인공관절 단축범위(Single-Radius) 수술자와 다축범위(Multi-Radius) 수술자의 운동역 학적 및 운동생리학적 비교분석)

  • Jin, Young-Wan;Kwak, Yi-Sub
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1532-1537
    • /
    • 2008
  • The purpose of this study was to investigate the effect of different arthroplasty designs on knee kinematic and lower limb muscular activation for up-stair and down-stair movement. 3-D video analysis of whole body and joint kinematics and EMG analysis of quadriceps and hamstrings were conducted. One-way ANOVAs were used for statistical analyses (p=0.05). The single-radius group exhibited more arthroplasty limb quadriceps EMG and hamstring coactivation EMG than the multi-radius group. Single-radius demonstrated more abduction angular displacement and reached peak abduction earlier than the multi-radius arthroplasty limb. The single- radius the percent body fat showed similar values in the Elderly, Single and Multi-radius group among the periods, however Control group was Lowered among the periods. Single-radius group limb also increased the quadriceps muscle activation level to produce more knee extension moment to compensate for the short quadriceps moment arm. Resting metabolic rate was significantly increased in control group in the period of LI. Energy expenditure was extremely increased in all groups except control group among the periods. We can say this is the exercise effects.

On the osseointegration of zirconia and titanium implants installed at defect site filled with xenograft material (이종골 이식을 동반한 지르코니아와 타이타늄 임플란트의 골유착에 관한 연구)

  • Kim, Sung-Won;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • Purpose: The purpose of this study was to compare zirconia implants with titanium implants from the view point of biomechanical stability and histologic response on osseointegration when those were placed with xenograft materials. Materials and methods: Specimens were divided into two groups; the control group was experimented with eighteen titanium implants which had anodized surface and the experimental group was experimented with eighteen sandblasted zirconia (Y-TZP) implants. At the tibias of six pigs, implants were installed into bone defect sites prepared surgically and treated with resorbable membranes and bovine bone. Two pigs were sacrificed after 1, 4 and 12 weeks respectively. Each implant site was sampled and processed for histologic and histomorphometric analysis. The stability of implants was evaluated with a $Periotest^{(R)}$. And the interfaces between bone and the implant were observed with a scanning electron microscope. Results: In stability analysis there was no significant difference between Periotest values of the control group and the experimental group. In histologic analysis with a light microscope after 4 weeks, there was new bone formation with the resorption of bovine bone and the active synthesis of osteoblasts in both groups. In bone-implant contact percentage there was significant difference between both groups (P<.05). In bone area percentage there was no significant difference between both groups. In analysis of both groups with a scanning electron microscope there was a gap between bone and a surface at 4 weeks and it was filled up with bone formed newly at 12 weeks. Conclusion: When accompanied by xenograft using membrane, bone to implant contact percentage of zirconia implants used in this experiment was significantly less than that of the titanium implants by surface treatment of anodic oxidation. So, it is considered that the improvement of zirconia implant is needed through ongoing research on surface treatment methods for its practical use.

The Influence of Attachment Type on the Distribution of Occlusal Force in Implant Supported Overdentures (하악 임플란트 오버덴쳐에서 어태치먼트 종류에 따른 응력분포)

  • Sung, Chai-Ryun;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.375-390
    • /
    • 2009
  • Statement of problem: Implant supported overdenture is accepted widely as a way to restore edentulous ridge providing better retention and support of dentures. Various types of attachment for overdenture have been developed. Purpose: The purpose of this study was to investigate the influence of attachment type in implant overdentures on the biomechanical stress distribution in the surrounding bone, prosthesis and interface between implant and bone. Material and methods: Finite element analysis method was used. Average CT image of mandibular body(Digital $Korea^{(R)}$, KISTI, Korea) was used to produce a mandibular model. Overdentures were placed instead of mandibular teeth and 2mm of mucosa was inserted between the overdenture and mandible. Two implants($USII^{(R)}$, Osstem, Korea) were placed at both cuspid area and 4 types of overdenture were fabricated ; ball and socket, Locator, magnet and bar type. Load was applied on the from second premolar to second molar tooth area. 6 times of finite element analyses were performed according to the direction of the force $90^{\circ}$, $45^{\circ}$, $0^{\circ}$ and unilateral or bilateral force applied. The stress at interface between implants and bone, and prosthesis and the bone around implants ware compared using von Mises stress. The results were explained with color coded graphs based on the equivalent stress to distinguish the force distribution pattern and the site of maximum stress concentration. Results: Unilateral loading showed that connection area between implant fixture and bar generated maximum stress in bar type overdentures. Bar type produced 100 Mpa which means the most among 4 types of attachments. Bilateral loading, however, showed that bar type was more stable than other implants(magnet, ball and socket). 26 Mpa of bar type was about a half of other types on overdenture under $90^{\circ}$ bilateral loading. Conclusions: In any directions of stress, bar type was proved to be the most vulnerable type in both implants and overdentures. Interface stress did not show any significant difference in stress distribution pattern.

Cell study on the Magnesium ion implanted surface with PSII (PSII를 이용한 마그네슘 이온 주입 임플란트에 대한 MC3T3-E1 골모양 세포 반응 연구)

  • Shin, Hyeong-Joo;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra;Lee, Hee-Su;Cha, Min-Sang
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.361-374
    • /
    • 2009
  • For successful osteogenesis around the implants, interaction between implant surface and surrounding tissue is important. Biomechanical bonding and biochemical bonding are considered to influence the response of adherent cells. But the focus has shifted surface chemistry. The purpose of this study is to evaluate the MC3T3-E1 osteoblast like cell responses of magnesium (Mg) ion implanted titanium surface produced using a plasma source ion implantation method. Commercially pure titanium disc was used as substrates. The discs were prepared to produce four different surface, A: Machine turned surface, B: Mg implanted surface, C: sandblasted surface, D: sandblasted and Mg implanted surface. MC3T3 El osteoblastic like cells were cultured on the disc specimens. Cell adhesion, proliferation, differentiation, and synthesis of extracellular matrix were evaluated. The cell adhesion morphology was evaluated by SEM. RT PCR assay was used for assessment of cell adhesion, proliferation and differentiation. ALP activity was measured for cell differentiation. The results of this study were as follows: 1. SEM showed that cell on Mg ion groups was more proliferative than that of non Mg ion groups. On the machine turned surface, cell showed some degree of contact guidance in aligning with the machining grooves. 2. In RT PCR analysis, osteonectin and c-fos mRNA were more expressed on sandblasted and Mg ion implanted group. 3. ALP activity was not significantly different among all groups. Within the limitations of this study, the following conclusions were drawn: It might indicate Mg ion implanted titanium surface induce better bone response than non Mg ion groups.

BIOMECHANICS OF ABUTMENTS SUPPORTING REMOVABLE PARTIAL DENTURES UNDER UNILATERAL LOADING

  • Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Jeong-Taek;Roh, Hyun-Ki;Kim, Hyo-Jin;Lee, Seok-Hyung;Lee, Joo-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.753-759
    • /
    • 2007
  • Statement of problem. In distal extension removable partial denture, the preservation of health of abutment teeth is very important, but abutment teeth are subjected to unfavorable stress under unilateral loading specially. Purpose. The purpose of this study was to investigate the biomechanical effects of mandibular removable partial dentures with various prosthetic designs under unilateral loading, using strain gauge analysis. Material and methods. Artificial teeth of both canines were anchored bilaterally in a mandibular edentulous model made of resin. Bilateral distal extension removable partial dentures with splinted and unsplinted abutments were fabricated. Group 1: Clasp-retained mandibular removable partial denture with unsplinted abutments Group 2: Clasp-retained mandibular removable partial denture with splinted abutments by 6-unit bridge. Group 3: Bar-retained mandibular removable partial denture Strain gauges were bonded on the labial plate of the mandibular resin model, approximately 2 mm dose to the abutments. Two unilateral vertical experimental loadings (30N and 100N) were applied subsequently via miniature load cell that were placed at mandibular left first molar region. Strain measurements were performed and simultaneously monitored from a computer connected to data acquisition system. For within-group evaluations, t-test was used to compare the strain values and for between-group comparisons, a one-way analysis of variance (ANOVA) was used and Tukey test was used as post hoc comparisons. Results. The strain values of group 1 and 2 were tensile under loadings. In contrast, strain values of group 3 were compressive in nature. Strain values increased as the applied load in increased from 30N to 100N (p<.05) except for right side in group 1. Under 30N loading, in left side, group 1 showed higher strain values than groups 2 and 3 in absolute quantity (p<.05). And group 2 showed higher strain values than group 1 (p<.05). In right side, group 1 and 2 showed higher strain values than group 3 in absolute quantity (p<.05). Under 100N loading in left side, group 1 showed higher strain values than groups 2 and 3 in absolute quantity (p<.05). And group 2 showed higher strain values than group 1 (p<.05). In right side, group 1 and 2 showed higher strain values than group 3 in absolute quantity (p<.05). Under 30N loading, group 2 and 3 showed higher strain values in right side than in left side. Under 100N loading, right side strain values were higher than left side ones for all groups. Conclusion. Splinting of two isolated abutments by bridge reduced the peri-abutment strain in comparison with unsplinted abutments under unilateral loading. Bar-retained removable partial denture showed the lowest strain of three groups, and compressive nature.

Establishment of a Murine Model for Radiation-induced Bone Loss in Growing C3H/HeN Mice (성장기 마우스에서 방사선 유도 골소실 동물모델 확립)

  • Jang, Jong-Sik;Moon, Changjong;Kim, Jong-Choon;Bae, Chun-Sik;Kang, Seong-Soo;Jung, Uhee;Jo, Sung-Kee;Kim, Sung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.10-16
    • /
    • 2015
  • Bone changes are common sequela of irradiation in growing animal. The purpose of this study was to establish an experimental model of radiation-induced bone loss in growing mice using micro-computed tomography (${\mu}CT$). The extent of changes following 2 Gy gamma irradiation ($2Gy{\cdot}min^{-1}$) was studied at 4, 8 or 12 weeks after exposure. Mice that received 0.5, 1.0, 2.0 or 4.0 Gy of gamma-rays were examined 8 weeks after irradiation. Tibiae were analyzed using ${\mu}CT$. Serum alkaline phosphatase (ALP) and biomechanical properties were measured and the osteoclast surface was examined. A significant loss of trabecular bone in tibiae was evident 8 weeks after exposure. Measurements performed after irradiation showed a dose-related decrease in trabecular bone volume fraction (BV/TV) and bone mineral density (BMD), respectively. The best-fitting dose-response curves were linear-quadratic. Taking the controls into accounts, the lines of best fit were as follows: BV/TV (%) = $0.9584D^2-6.0168D+20.377$ ($r^2$ = 0.946, D = dose in Gy) and BMD ($mg{\cdot}cm^{-3}$) = $8.8115D^2-56.197D+194.41$ ($r^2$ = 0.999, D = dose in Gy). Body weight did not differ among the groups. No dose-dependent differences were apparent among the groups with regard to mechanical and anatomical properties of tibia, serum ALP and osteoclast activity. The findings provide the basis required for better understanding of the results that will be obtained in any further studies of radiation-induced bone responses.

Failure Properties of Common Tendon Origins at the Human Elbow after Static and Repetitive Loading (정적 및 반복하중 시의 주관절 Tendon의 파괴 물성치 측정)

  • Han, Jeong-Su;Lee, Gwan-Hui;Yu, Jae-Yeong
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.393-401
    • /
    • 1998
  • Based on clinical observations, it is suspected that the bone-tendon origin is the site where piratical failure, leading to pathophysiological changes in the humeral epicondyle after repetitive loading, is initiated Mechanical properties and failure patterns of the common extensor and flexor tendons of the humeral epicondyle under static and repetitive loading have not been well documented. Our goal was to determine mechanical properties of failure strength and strain changes, to correlate strain changes and the number of cyclic repetitions, and to identify the failure pattern of bone-tendon specimens of common extensor and flexor tendons of the humeral epicondyle. Mechnaical properties of human cadaver bone-tendon specimens of the common extensor and flexor tendons of the humeral epicondyle were tested under two different loading rates. No statistically significant difference in ultimate tensile strength was found between male and female specimens or between slow (10 mm/sec) and fast elongation (100 mm/sec) rates. However, a statistically significant difference in ultimate tensile strength between the common extensor (1190.0 N/$cm^2{\pm}$388.8) and flexor 1922.0 N/$cm^2{\pm}$764.4)tendons was found (p<0.05). When loads of 25%, 33%, and 41% of the ultimate tensile strength of their contralateral sides were applied, the number of cycles required to reach 24% strain change for the common extersor and flexor tendons were approximately 8,893, 1,907, and 410, respectively. The relationship between cycles and loads was correlated ($R^2$=0.46) Histological observation showed that complete or partial failure after tensile or cyclic loadings occurred at the transitional zone, which is the uncalcified fibrocartilage zone between tendon and bone of the humeral epicondyle. Sequential histological sections revealed that failure initiated at the upper, medial aspect of the extensor carpi radialis brevis tendon origin. Biomechanical and hstological data obtained in this study indicated that the uncalcified fibrocartilage zone at the bone-tendon origin of the common extensor and flexor tendons is the weak anatomical structure of the humeral epicondyle.

  • PDF

Early Failure of Cortical-Bone Screw Fixation in the Lumbar Spinal Stenosis (요추부 협착에서의 피질골 궤도 나사못 고정의 초기 실패 사례에 대한 고찰)

  • Kwon, Ji-Won;Kim, Jin-Gyu;Ha, Joong-Won;Moon, Seong-Hwan;Lee, Hwan-Mo;Park, Yung
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.5
    • /
    • pp.405-410
    • /
    • 2020
  • Purpose: Pedicle screw insertion has been traditionally used as a surgical treatment for degenerative lumbar spine disease. As an alternative, the cortical-bone trajectory screw allows less invasive posterior lumbar fixation and excellent mechanical stability, as reported in several biomechanical studies. This study evaluated the clinical and radiological results of a case of early failure of cortical-bone screw fixation in posterior fixation and union after posterior decompression. Materials and Methods: This study examined 311 patients who underwent surgical treatment from 2013 to 2018 using cortical orbital screws as an alternative to traditional pedicle screw fixation for degenerative spinal stenosis and anterior spine dislocation of the lumbar spine. Early fixation failure after surgery was defined as fixation failure, such as loosening, pull-out, and breakage of the screw on computed tomography (CT) and radiographs at a follow-up of six months. Results: Early fixation failure occurred in 46 out of 311 cases (14.8%), screw loosening in 46 cases (14.8%), pull-out in 12 cases (3.9%), and breakage in four cases (1.3%). An analysis of the site where the fixation failure occurred revealed the following, L1 in seven cases (15.2%), L2 in three cases (6.5%), L3 in four cases (8.7%), L4 in four cases (8.7%), L5 in four cases (8.7%), and S1 in 24 cases (52.2%). Among the distal cortical bone screws, fixation failures such as loosening, pull-out, and breakage occurred mainly in the S1 screws. Conclusion: Cortical-bone trajectory screw fixation may be an alternative with comparable clinical outcomes or fewer complications compared to conventional pedicle screw fixation. On the other hand, in case with osteoporosis and no anterior support structure particularly at L5-S1 fusion sites were observed to have result of premature fixation failures such as relaxation, pull-out, and breakage.

Comparison of Gap Pressure in Opening Wedge High Tibial Osteotomy versus Compressive Strength of Allogenous Wedge Bone Blocks (경골 근위부 개방 절골술 시 개방부 압력과 동종 쐐기 골편의 최대압축하중 비교)

  • Yoon, Kyoung Ho;Kim, Jung Suk;Kwon, Yoo Beom;Kim, Eung Ju;Lee, Myeong-Kyu;Kim, Sang-Gyun
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.2
    • /
    • pp.127-134
    • /
    • 2020
  • Purpose: The aims of this study were (1) to investigate the relationship between the characteristics of allogenic bone block and the compressive strength of an allogenic bone block measured by biomechanical experiments, and (2) to compare the maximum pressure load of allogenic bone block with the gap pressure measured at the high tibial opening osteotomy. Materials and Methods: Ten patients who provided informed consent for gap pressure measurements during opening wedge high tibial osteotomy (OWHTO) were included. The gap pressures were measured at 1 mm intervals while opening the osteotomy site from 8 mm to 14 mm. Seventeen U-shaped allogenous wedge bone blocks were made from the femur, tibia, and humerus. The height, width, cross-sectional area, and cortex thickness of the bone blocks were measured, along with the maximum compressive load just before breakage. The relationship between these characteristics and the maximum pressure load of the bone blocks was evaluated. The gap pressures measured in OWHTO were compared with the maximum pressure loads of the allogenous wedge bone blocks to evaluate the possibility of inserting allogenous wedge bone blocks into the osteotomy site without a distractor in OWHTO. Results: The OWHTO gap pressure increased with increasing osteotomy site opening. The mean gap pressure, which occurred at a 14-mm opening, was 282±93 N; the maximum pressure was 427 N. The maximum pressure load of the allografts was 13,379±6,469 N (minimum, 5,868; maximum, 29,130 N) and was correlated significantly with the cortical bone thickness (correlation coefficient=0.693, p=0.002) and cross-sectional area (correlation coefficient=0.826, p<0.001). Depending on the sterilization method, the maximum pressure loads for the bone blocks were 13,406±5,928 N for freeze-dried and 13,348±7,449 N for fresh frozen. The maximum compressive load of the allogenous wedge bone blocks was 13.7-times greater than that in OWHTO opened to 14 mm (5,868 N vs. 427 N). Conclusion: The compressive strength of allogenous wedge bone blocks was sufficiently greater than the gap pressure in OWHTO. Therefore, allogenous wedge bone blocks can be inserted safely into the osteotomy site without a distractor.

Anterolateral Ligament of the Knee: Anatomy, Biomechanics, Techniques, and Clinical Outcome (슬관절 전외측인대의 해부학, 생역학, 수술법 및 임상적 결과)

  • Kim, Seong Hwan;Lee, Tae-Hyub;Park, Yong-Beom
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.4
    • /
    • pp.281-293
    • /
    • 2020
  • An anterior cruciate ligament (ACL) reconstruction is one of the most frequent surgical procedures in the knee joint, but despite the better understanding of anatomy and biomechanics, surgical reconstruction procedures still fail to restore rotational stability in 7%-16% of patients. Hence, many studies have attempted to identify the factors for rotational laxity, including the anterolateral ligament (ALL), but still showed controversies. Descriptions of the ALL anatomy are also confused by overlapping nomenclature, but it is usually known as a distinctive fiber running in an anteroinferior and oblique direction from the lateral epicondyle of the femur to the proximal anterolateral tibia, between the fibular head and Gerdy's tubercle. The importance of the ALL as a secondary restraint in the knee has been emphasized for successful ACL reconstructions that can restore rotational stability, but there is still some controversy. Some studies reported that the ALL could be a restraint to the tibial rotation, but not to anterior tibial translation. On the other hand, some studies reported that the role of ALL in rotational stability would be limited as a secondary structure because it bears loads only beyond normal biomechanical motion. The diagnosis of an ALL injury can be performed by a physical examination, radiology examination, and magnetic resonance imaging, but it should be assessed using a multimodal approach. Recently, ALL was considered one of the anterolateral complex structures, as well as the Kaplan fiber in the iliotibial band. Many studies have introduced many indications and treatment options, but there is still some debate. The treatment methods are introduced mainly as ALL reconstructions or lateral extra-articular tenodesis, which can achieve additional benefit to the knee stability. Further studies will be needed on the indications and proper surgical methods of ALL treatment.