DOI QR코드

DOI QR Code

경골 근위부 개방 절골술 시 개방부 압력과 동종 쐐기 골편의 최대압축하중 비교

Comparison of Gap Pressure in Opening Wedge High Tibial Osteotomy versus Compressive Strength of Allogenous Wedge Bone Blocks

  • 윤경호 (경희대학교 의과대학 정형외과학교실) ;
  • 김정석 (경희대학교 의과대학 정형외과학교실) ;
  • 권유범 (경희대학교 의과대학 정형외과학교실) ;
  • 김응주 (경희대학교 의과대학 정형외과학교실) ;
  • 이명규 (한국공공조직은행 연구개발과) ;
  • 김상균 (경희대학교 의과대학 정형외과학교실)
  • Yoon, Kyoung Ho (Department of Orthopedic Surgery, College of Medicine, Kyung Hee University) ;
  • Kim, Jung Suk (Department of Orthopedic Surgery, College of Medicine, Kyung Hee University) ;
  • Kwon, Yoo Beom (Department of Orthopedic Surgery, College of Medicine, Kyung Hee University) ;
  • Kim, Eung Ju (Department of Orthopedic Surgery, College of Medicine, Kyung Hee University) ;
  • Lee, Myeong-Kyu (Department of Research and Development, Korea Public Tissue Bank) ;
  • Kim, Sang-Gyun (Department of Orthopedic Surgery, College of Medicine, Kyung Hee University)
  • 투고 : 2019.04.10
  • 심사 : 2019.06.21
  • 발행 : 2020.04.30

초록

목적: 이 연구의 목적은 동종 쐐기 골편의 성상과 최대압축하중과의 관계를 알아보고 동종 쐐기 골편의 최대압축하중과 경골 근위부 개방 절골술 시 측정된 개방부의 압력을 비교하는 것이다. 대상 및 방법: 경골 근위부 개방 절골술을 시행하기 전 연구에 동의한 10명의 환자가 본 연구에 포함되었다. 수술 중 절골 부위를 8 mm에서 14 mm까지 개방시키면서 1 mm 간격으로 개방부의 압력을 측정하였다. 대퇴골, 경골 및 상완골에서 U자형 동종 쐐기 골편을 채취하여 골편의 높이, 폭, 단면적 및 피질골의 두께를 측정한 뒤에 골편이 파괴되기 직전의 최대압축하중을 측정해 골편의 성상과 최대압축하중과의 관계를 평가하였다. 경골 근위부 개방 절골술 시 별도의 신연장치 없이 개방부에 동종 쐐기 골편을 삽입할 수 있는지 평가하기 위해 경골 근위부 개방 절골술 시 측정된 개방부 압력과 동종 쐐기 골편의 최대압축하중을 비교하였다. 결과: 경골 근위부 개방 절골술 중 절골부를 많이 개방할수록 개방부 압력이 증가해 14 mm 개방하였을 때 개방부의 압력(평균 282±93 N, 최대 427 N)이 가장 크게 측정되었다. 동종 쐐기 골편의 최대압축하중은 평균 13,379±6,469 N (최소값 5,868 N, 최대값 29,130 N)으로 측정되었으며 피질골의 두께(상관계수=0.693, p=0.002) 및 단면적(상관계수=0.826, p<0.001)과 유의한 상관관계를 가지고 있었다. 살균 방법에 따라 동결 건조(freeze-dried) 골편은 평균 13,406±5,928 N (최소값 5,868 N, 최대값 25,893 N), 동결(fresh frozen) 골편은 평균 13,348±7,449 N (최소값 5,916 N, 최대값 29,130 N)으로 측정되었다. 동종 쐐기 골편의 최대압축하중 최소값은 경골 근위부를 14 mm까지 개방하였을 때 측정된 개방부의 최대압력에 비해 13.7배 높았다(5,868 N vs. 427 N). 결론: 동종 쐐기 골편의 최소 압축 강도는 경골 근위부 개방 절골술 시 측정된 개방부의 최대 압력보다 충분히 큰 것으로 확인되었다. 따라서 경골 근위부 개방 절골술 중 별도의 신연장치 없이 동종 쐐기 골편을 개방부에 안전하게 삽입 가능한 것으로 판단된다.

Purpose: The aims of this study were (1) to investigate the relationship between the characteristics of allogenic bone block and the compressive strength of an allogenic bone block measured by biomechanical experiments, and (2) to compare the maximum pressure load of allogenic bone block with the gap pressure measured at the high tibial opening osteotomy. Materials and Methods: Ten patients who provided informed consent for gap pressure measurements during opening wedge high tibial osteotomy (OWHTO) were included. The gap pressures were measured at 1 mm intervals while opening the osteotomy site from 8 mm to 14 mm. Seventeen U-shaped allogenous wedge bone blocks were made from the femur, tibia, and humerus. The height, width, cross-sectional area, and cortex thickness of the bone blocks were measured, along with the maximum compressive load just before breakage. The relationship between these characteristics and the maximum pressure load of the bone blocks was evaluated. The gap pressures measured in OWHTO were compared with the maximum pressure loads of the allogenous wedge bone blocks to evaluate the possibility of inserting allogenous wedge bone blocks into the osteotomy site without a distractor in OWHTO. Results: The OWHTO gap pressure increased with increasing osteotomy site opening. The mean gap pressure, which occurred at a 14-mm opening, was 282±93 N; the maximum pressure was 427 N. The maximum pressure load of the allografts was 13,379±6,469 N (minimum, 5,868; maximum, 29,130 N) and was correlated significantly with the cortical bone thickness (correlation coefficient=0.693, p=0.002) and cross-sectional area (correlation coefficient=0.826, p<0.001). Depending on the sterilization method, the maximum pressure loads for the bone blocks were 13,406±5,928 N for freeze-dried and 13,348±7,449 N for fresh frozen. The maximum compressive load of the allogenous wedge bone blocks was 13.7-times greater than that in OWHTO opened to 14 mm (5,868 N vs. 427 N). Conclusion: The compressive strength of allogenous wedge bone blocks was sufficiently greater than the gap pressure in OWHTO. Therefore, allogenous wedge bone blocks can be inserted safely into the osteotomy site without a distractor.

키워드

참고문헌

  1. Lee DC, Byun SJ. High tibial osteotomy. Knee Surg Relat Res. 2012;24:61-9. https://doi.org/10.5792/ksrr.2012.24.2.61
  2. Sabzevari S, Ebrahimpour A, Roudi MK, Kachooei AR. High tibial osteotomy: a systematic review and current concept. Arch Bone Jt Surg. 2016;4:204-12.
  3. Ruzbarsky JJ, Dare DM, Marx RG. Closing verses opening wedge high tibial osteotomy: an evidence-based review. HSS J. 2015;11:291-3. https://doi.org/10.1007/s11420-015-9440-1
  4. Sun H, Zhou L, Li F, Duan J. Comparison between closing-wedge and opening-wedge high tibial osteotomy in patients with medial knee osteoarthritis: a systematic review and meta-analysis. J Knee Surg. 2017;30:158-65. https://doi.org/10.1055/s-0036-1584189
  5. Agneskirchner JD, Freiling D, Hurschler C, Lobenhoffer P. Primary stability of four different implants for opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2006;14:291-300. https://doi.org/10.1007/s00167-005-0690-1
  6. Brosset T, Pasquier G, Migaud H, Gougeon F. Opening wedge high tibial osteotomy performed without filling the defect but with locking plate fixation (TomoFixTM) and early weight-bearing: prospective evaluation of bone union, precision and maintenance of correction in 51 cases. Orthop Traumatol Surg Res. 2011;97:705-11. https://doi.org/10.1016/j.otsr.2011.06.011
  7. Raja Izaham RM, Abdul Kadir MR, Abdul Rashid AH, Hossain MG, Kamarul T. Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury. 2012;43:898-902. https://doi.org/10.1016/j.injury.2011.12.006
  8. Stoffel K, Stachowiak G, Kuster M. Open wedge high tibial osteotomy: biomechanical investigation of the modified Arthrex Osteotomy Plate (Puddu Plate) and the TomoFix Plate. Clin Biomech (Bristol, Avon). 2004;19:944-50. https://doi.org/10.1016/j.clinbiomech.2004.06.007
  9. Han SB, Bae JH, Lee SJ, et al. Biomechanical properties of a new anatomical locking metal block plate for opening wedge high tibial osteotomy: uniplane osteotomy. Knee Surg Relat Res. 2014;26:155-61. https://doi.org/10.5792/ksrr.2014.26.3.155
  10. Rubino LJ, Schoderbek RJ, Golish SR, Baumfeld J, Miller MD. The effect of plate position and size on tibial slope in high tibial osteotomy: a cadaveric study. J Knee Surg. 2008;21:75-9. https://doi.org/10.1055/s-0030-1247798
  11. Takeuchi R, Woon-Hwa J, Ishikawa H, et al. Primary stability of different plate positions and the role of bone substitute in open wedge high tibial osteotomy. Knee. 2017;24:1299-306. https://doi.org/10.1016/j.knee.2017.07.015
  12. Martinez de Albornoz P, Leyes M, Forriol F, Del Buono A, Maffulli N. Opening wedge high tibial osteotomy: plate position and biomechanics of the medial tibial plateau. Knee Surg Sports Traumatol Arthrosc. 2014;22:2641-7. https://doi.org/10.1007/s00167-013-2517-9
  13. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;329:300-9. https://doi.org/10.1097/00003086-199608000-00037
  14. Chae DJ, Shetty GM, Wang KH, Montalban AS Jr, Kim JI, Nha KW. Early complications of medial opening wedge high tibial osteotomy using autologous tricortical iliac bone graft and T-plate fixation. Knee. 2011;18:278-84. https://doi.org/10.1016/j.knee.2010.05.009
  15. Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002;84:454-64. https://doi.org/10.2106/00004623-200203000-00020
  16. Lobenhoffer P, Agneskirchner JD. Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2003;11:132-8. https://doi.org/10.1007/s00167-002-0334-7
  17. Pelker RR, Friedlaender GE, Markham TC. Biomechanical properties of bone allografts. Clin Orthop Relat Res. 1983;174:54-7.
  18. Pelker RR, Friedlaender GE, Markham TC, Panjabi MM, Moen CJ. Effects of freezing and freeze-drying on the biomechanical properties of rat bone. J Orthop Res. 1984;1:405-11. https://doi.org/10.1002/jor.1100010409