• Title/Summary/Keyword: Biomass to Liquid

Search Result 219, Processing Time 0.025 seconds

Monthly HPLC Measurements of Pigments from an Intertidal Sediment of Geunso Bay Highlighting Variations of Biomass, Community Composition and Photo-physiology of Microphytobenthos (HPLC를 이용한 근소만 조간대 퇴적물내의 저서미세조류 현존량, 군집 및 광생리의 월 변화 분석)

  • KIM, EUN YOUNG;AN, SUNG MIN;CHOI, DONG HAN;LEE, HOWON;NOH, JAE HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • In this study, the surveys were carried out from October (2016) to October (2017) along the tidal flat of Geunso Bay, Taean Peninsula of the western edge of Korea. The sampling trips were carried out for a total of 16 times, once or twice a month. In order to investigate the monthly variation of the microphytobenthos (MPB) biomass, community composition and photo-physiology were analyzed by HPLC (High performance liquid chromatography). The total chlorophyll a (TChl a) concentrations used as an indicator of biomass of MPB in the upper 1 cm sediment layer ranged from 40.4 to $218.9mg\;m^{-2}$ throughout the sampling period. TChl a concentrations showed the maximum level on $24^{th}$ of February and remained high throughout March after which it started to declined. The biomass of MPB showed high values in winter and low values in summer. The monthly variations of Phaeophorbide a concentrations suggested that the low grazing intensity of the predator in the winter may have partly attributed to the MPB winter blooming. As a result of monthly variations of the MPB community composition using the major marker pigments, the concentrations of fucoxanthin, the marker pigment of benthic diatoms, were the highest throughout the year. The concentrations of most of the marker pigments except for chlorophyll b (chlorophytes) and peridinin (dinoflagellates) increased in winter. However, the concentrations of fucoxanthin increased the highest, and the relative ratios of the major marker pigments to TChl a except fucoxanthin decreased during the same period. The vertical distribution of Chl a and oxygen concentrations in the sediments using a fluorometer and an oxygen micro-optode Chl a concentrations decreased with oxygen concentrations with increasing depth of the sediment layers. Moreover, this tendency became more apparent in winter. The Chl a was uniformly vertical down to 12 mm from May to July, but the oxygen concentration distribution in May decreased sharply below 1 mm. The increase in phaeophorbide a concentration observed at this time is likely to be caused by increased oxygen consumption of zoobenthic grazing activities. This could be presumed that MPB cells are transported downward by bioturbation of zoobenthos. The relative ratios (DT/(DD+DT)) obtained with diadinoxanthin (DD) and diatoxanthin (DT), which are often used as indicators of photo-adaptation of MPB, decreased from October to March and increased in May. This indicated that there were monthly differences in activity of Xanthophyll cycle as well.

Treatment of Paper Mill Wastewater by the Deep Shaft Activated Sludge Process (심층폭기(深層曝氣) 활성(活性)슬러지법(法)을 이용(利用)한 제지폐수(製紙廢水)의 생물학적(生物學的) 처리(處理)에 관한 연구(研究))

  • Kim, Hwan Gi;Yang, Bong Yong;Lee, Bok Yul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.275-284
    • /
    • 1992
  • A generated problem in treated highly concentrated organic wastewater by activated sludge process is the limitation of biomass concentration and oxygen transfer capability in aeration tank. To overcome the limitation, the deep shaft activated sludge process which has high oxygen transfer capability was applied to the wastewater treatment process. This paper investigated the characteristics of liquid circulation, oxygen transfer and biological treatment of paper mill wastewater by the deep shaft activated sludge process. From the obtained results, it was found that the oxygen transfer capability in the deep shaft system was much greater than those in the conventional aeration systems and almost tantamount to the pure oxygen system. The deep shaft system could treat highly concentrated organic wastewater by higher biomass concentration and organic loading rate.

  • PDF

Performances of Anaerobic Sequencing Batch Reactor for Digestion of Municipal Sludge at the Conditions of Critical Solid-liquid Separation (혐기성 연속 회분식 공정에 의한 도시하수슬러지 소화시 고액분리 특성에 따른 처리효율평가)

  • Hur, Joon-Moo;Park, Jong-An
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.77-85
    • /
    • 2002
  • The objective of this study was to evaluate the performances of the ASBR under critical conditions of solid-liquid separation, caused by extremely high solids concentration, for wider application of the ASBR to various wastes. The ASBRs and completely-mixed daily-fed control runs were operated using a municipal mixed sludge at 35$^{\circ}C$ and 55$^{\circ}C$. Conversion of completely-mixed daily-fed reactor to sequencing batch mode and changes in HRT of all ASBRs were easily achieved without adverse effect, regardless of digestion temperature. Solids accumulation was remarkable in the ASBRs, and directly affected by settleable solids concentration of the feed sludge. Noticeable difference in solids-liquid separation was that flotation thickening occurred in the mesophilic ASBRs, while gravity thickening was a predominant solid-liquid separation process in the thermophilic ASBRS. Solids profiles at the end of thickening step dramatically changed at solid-liquid interface, and slight difference in solids concentrations was observed within thickened sludge bed. Organics removals based on subnatant or supernatant after thickening always exceeded 80% in all reactors. Thickened sludge volume and gas production of the ASBRs affected mutually. Gas production increased as thickened sludge accumulated, and continuous gas evolution during thickening could cause thickened sludge to expand or resuspend. Thickened sludge volume exceeding a predetermined withdrawal level resulted in loss of organic solids as well as biomass during withdrawal step, leading to decrease in gas production ind SRT. Such an adverse mutual effect was significant in gravity thickening, while it was not sensitive in flotation thickening. Changes in organic loading had no significant effect on organic removals and gas production after build-up of solids in the ASBRs.

Effects of Physicochemical and Environmental Factors on Spatial and Temporal Variations in Phytoplankton Pigment and its Community Composition in Jinhae Bay (진해만에서 물리화학적 환경요인이 식물플랑크톤 색소 및 군집조성의 시공간적 변화에 미치는 영향)

  • Na, Sujin;Lee, Jiyoung;Kim, Jeong Bae;Koo, Jun-Ho;Lee, Garam;Hwang, Hyunjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.340-354
    • /
    • 2021
  • The aim of this study was to investigate the spatial and temporal distribution of phytoplankton biomass and community composition in Jinhae Bay on the southern coast of Korea. Phytoplankton pigment analysis was conducted using ultra performance liquid chromatography (UPLC) were conducted from April to December 2019 at seven stations. Temperature, salinity, and dissolved oxygen (DO) and inorganic nutrients (dissolved nitrogen, dissolved phosphorus, and orthosilicic acid) were measured to investigate the environmental factors associated with the structure of phytoplankton community. Phytoplankton biomass (Chl-a) was the highest in July (mean 15.4±4.3 ㎍/L) and the lowest in December (mean 3.5±0.6 ㎍/L). Fucoxanthin was the most abundant carotenoid and showed a similar variation pattern to Chl-a, peridinin, and Chl-b. Phytoplankton community composition analysis showed that diatoms were a predominant group with an average abundance of 70 % whereas chlorophytes, cryptophytes, and dinoflagellates often appeared with lower averages. Further, the dominance of diatoms was closely correlated with water temperature and N:P ratio, which might be influenced by high temperatures in the summer and nutrient loading from the land. Additionally, freshwater and nutrient input by rainfall was estimated to be the most important environmental factor. Hence, the spatial and temporal variations in the composition of phytoplankton pigments and phytoplankton community were correlated with physicochemical and environmental parameters.

Catalytic Fast Pyrolysis of Tulip Tree (Liriodendron) for Upgrading Bio-oil in a Bubbling Fluidized Bed Reactor

  • Ly, Hoang Vu;Kim, Jinsoo;Kim, Seung-Soo;Woo, Hee Chul;Choi, Suk Soon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2020
  • The bio-oil produced from the fast pyrolysis of lignocellulosic biomass contains a high amount of oxygenates, causing variation in the properties of bio-oil, such as instability, high acidity, and low heating value, reducing the quality of the bio-oil. Consequently, an upgrading process should be recommended ensuring that these bio-oils are widely used as fuel sources. Catalytic fast pyrolysis has attracted a great deal of attention as a promising method for producing upgraded bio-oil from biomass feedstock. In this study, the fast pyrolysis of tulip tree was performed in a bubbling fluidized-bed reactor under different reaction temperatures, with and without catalysts, to investigate the effects of pyrolysis temperature and catalysts on product yield and bio-oil quality. The system used silica sand, ferric oxides (Fe2O3 and Fe3O4), and H-ZSM-5 as the fluidized-bed material and nitrogen as the fluidizing medium. The liquid yield reached the highest value of 49.96 wt% at 450 ℃, using Fe2O3 catalyst, compared to 48.45 wt% for H-ZSM-5, 47.57 wt% for Fe3O4 and 49.03 wt% with sand. Catalysts rejected oxygen mostly as water and produced a lower amount of CO and CO2, but a higher amount of H2 and hydrocarbon gases. The catalytic fast pyrolysis showed a high ratio of H2/CO than sand as a bed material.

Hydrochar Production from Kenaf via Hydrothermal Carbonization: Effect of Process Conditions on Hydrochar Characterization (열수탄화를 통해 kenaf로부터 hydrochar생산과 공정 조건에 따른 hydrochar 특성에 끼치는 영향)

  • Youn, Hee Sun;Um, Byung Hwan
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • The lignite and bituminous coal are mainly used in thermal power plant. They exhaust green house gas (GHG) such as CO2, and become deplete, thus require alternative energy resources. To solve the problem, the hydrochar production from biomass is suggested. In this study, both hydrothermal carbonization (HTC) and solvothermal carbonization (STC) were used to produce high quality hydrochar. To improve the reactivity of water solvent process in HTC, STC process was conducted using ethanol solution. The experiments were carried out by varying the solid-liquid ratio (1:4, 1:8, 1:12), reaction temperature (150~300 ℃) and retention time (15~120 min) using kenaf. The characteristic of hydrochar was analyzed by EA, FT-IR, TGA and SEM. The carbon content of hydrochar increased up to 48.11%, while the volatile matter decreased up to 39.34%. Additionally, the fuel characteristic of hydrochar was enhanced by reaction temperature. The results showed that the kenaf converted to a fuel by HTC and STC process, which can be used as an alternative energy source of coal.

Characterization of Bio-oils Produced by Fluidized Bed Type Fast Pyrolysis of Woody Biomass (목질바이오매스의 급속열분해에 의해 생성된 바이오오일의 특성 분석)

  • Choi, Joon-Weon;Choi, Don-Ha;Cho, Tae-Su;Meier, Dietrich
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.36-43
    • /
    • 2006
  • Using fluidized bed type fast pyrolysis system (capacity 400 g/h) bio-oils were produced from beech (Fagus sylvatica) and softwood mixture (spruce and larch, 50:50). The pyrolysis was performed for 1~2 s at the temperature of $470{\pm}5^{\circ}C$. Pyrolysis products consisted of liquid form of bio-oil, char and gases. In beech wood bio-oil was formed to ca. 60% based on dry biomass weight and the yield of bio-oil was 49% in soft wood mixture. The moisture contents in both bio-oils were ranged between 17% and 22% and the bio-oil's density was measured to $1.2kg/{\ell}$. Bio-oils were composed of 45% carbon, 47% oxygen, 7% hydrogen and lower than 1% nitrogen,which was very similar to those of original biomass. In comparison with oils from fossil resources, oxygen content was very high in bio-oils, while no sulfur was found. More than 90 low molecular weight components, classified to aromatic and non aromatic compounds, were identified in bio-oils by gas chromatographic analysis, which amounted to 31~33% based on the dry weight of bio-oils.

Effect of Light with Different Wavelengths on Nostoc flagelliforme Cells in Liquid Culture

  • Dai, Yu-Jie;Li, Jing;Wei, Shu-Mei;Chen, Nan;Xiao, Yu-Peng;Tan, Zhi-Lei;Jia, Shi-Ru;Yuan, Nan-Nan;Tan, Ning;Song, Yi-Jie
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.534-538
    • /
    • 2013
  • The effects of lights with different wavelengths on the growth and the yield of extracellular polysaccharides of Nostoc flagelliforme cells were investigated in a liquid cultivation. N. flagelliforme cells were cultured for 16 days in 500 ml conical flasks containing BG11 culture medium under $27{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light intensity and $25^{\circ}C$ on a rotary shaker (140 rpm). The chlorophyll a, phycocyanin, allophycocyanin, and phycoerythrin contents in N. flagelliforme cells under the lights of different wavelengths were also measured. It was found that the cell biomass and the yield of polysaccharide changed with different wavelengths of light. The biomass and the yield of extracellular polysaccharides under the red or violet light were higher than those under other light colors. Chlorophyll a, phycocyanin, and allophycocyanin are the main pigments in N. flagelliforme cells. The results showed that N. flagelliforme, like other cyanobacteria, has the ability of adjusting the contents and relative ratio of its pigments with the light quality. As a conclusion, N. flagelliforme cells favor red and violet lights and perform the complementary chromatic adaptation ability to acclimate to the changes of the light quality in the environment.

Effect of Fish Meal Liquid Fertilizer Application on Soil Characteristics and Growth of Cucumber(Cucumis sativus L.) for Organic Culture (유기농 오이재배를 위한 어분액비 공급이 토양특성 및 오이 수량에 미치는 영향)

  • An, Nan-Hee;Cho, Jung-Rai;Gu, Ja-Sun;Kim, Young-ki;Han, Eun-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.13-21
    • /
    • 2017
  • This study was carried out to evaluate the application effects of fish meal liquid fertilizer on soil characteristics and growth of cucumber for organic cultivation. Cucumber in greenhouse was transplanted on March $31^{th}$ in 2016, and the experimental treatments involve six treatments: No fertilizer, 0, 25, 50, and 100 mg/L N application by fish meal liquid fertilizer and chemical fertilizer. In the results of soil chemical property, application of 100 mg/L of fish meal liquid fertilizer showed a significant differences in pH, K, and Mg contents. The soil microbial community varied in relation to the fish meal liquid fertilizer treatments. Microbial biomass was lower in the chemical fertilizer than in the liquid fertilizer treatment. Result of principal component analysis obtained from Ecoplate showed that fish meal liquid fertilizer treatments, no liquid fertilizer, chemical fertilizer, and no fertilizer were divided into distinct groups, with the no fertilizer treatment located furthest from the other treatments. There were no significant differences in plant height of cucumber between the fish meal liquid fertilizer treatments and chemical fertilizer treatments. Also, the cucumber yield did not vary significantly between the concentrations of liquid fertilizers, and there were also no significant differences in the yield among the fish meal liquid and chemical fertilizer treatments. In conclusion, it is suggested that the application of fish meal liquid fertilizer can be used as a additional fertilizer for cucumber production with organic culture in greenhouse.

Evaluation of Grinding Effects on the Extraction of Photosynthetic Pigments for HPLC Analysis (광합성 색소의 HPLC 분석을 위한 여과지 분쇄 효과 평가)

  • Jang, Su Jin;Park, Mi Ok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.2
    • /
    • pp.71-77
    • /
    • 2015
  • High-Performance Liquid Chromatography (HPLC) is a widely used method for measuring the concentration of chlorophyll a as an indicator for estimating phytoplankton biomass and primary production and also for identifying carotenoids to determine phytoplankton composition. However, tissue grinding procedure requires a lot of time and experience in the analysis of multiple sample. Accordingly, we measured the concentrations of photosynthetic pigments before and after the grinding, in order to understand the grinding effects on the quantitative analysis of chlorophylls and carotenoids using samples from southwestern East Sea. When tissue grinding procedure was omitted, we found that Chl a concentrations were underestimated up to 45% in average. Also, concentrations of Zeaxanthin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, biomarkers of pico and nano-size phytoplankton, were underestimated up to maximum 77~85% without grinding. We found that the smaller the phytoplankton, the bigger underestimation of their biomarker pigments concentration is likely to happen due to the incomplete extraction. Thus, tissue grinding procedure should be included for HPLC analysis in all cases, to prevent the underestimation of not only Chl a but also carotenoids pigments.