• Title/Summary/Keyword: Biomass to Liquid

Search Result 219, Processing Time 0.034 seconds

Development of syngas supplying system for BTL (Biomass to Liquid) process (BTL(Biomass to Liquid) 공정을 위한 합성가스 공급 시스템 개발)

  • Kim, Y.D.;Kim, B.J.;Moon, J.H.;Lee, U.D.;Kim, K.S.;Yang, C.W.;Lee, J.W.;Lee, S.H.;Kim, J.H.;Lee, S.B.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.223-226
    • /
    • 2012
  • Biomass to Liquid (BTL) is an attractive option for using biomass as an renewable energy. A syngas supplying system has been designed for BTL system, based on the Fischer-Tropsche (FT) process, and long-term operation test was conducted. The syngas supplying system is composed of a fluidized bed gasifier, gas cleaning and compression system, and methanol absorption system. Stable operation of more than hundred hours was achieved with several champaigns. In addition, a pilot scale biomass gasifier has been developed for 1 bbl/day BTL system and its performance was evaluated. Some preliminary results and current status of the development of BTL system will be presented.

  • PDF

Effect of the Liquid Circulation Velocity on the Biofilm Development in an IFBBR (역 유동층 생물막 반응기에서 액체순환속도가 생물막에 미치는 영향)

  • 김동석;윤준영
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 1994
  • Effect of the liquid circulation velocity on the biofilm development was investigated in an inverse fluidized bed biofilm reactor(IFBBR). To observe the effect of the influent COD concentration on biofilm simultaneously, the influent COD value was adjusted to 1000mg/1 f for 1st reactor, and 2500mg/l for 2nd reactor. The liquid circulation velocity was adjusted by controlling the initial liquid height. As the liquid circulation velocity was decreased, the settling amount of biomass was increased and the amount of effluent biomass was decreased. Since the friction of liquid was decreased by the decrease of liquid circulation velocity, the biofilm thickness was increased and the biofilm dry density was decreased. In the 1st reactor the SCOD removal efficiency was constant regardless of the variation of the liquid circulation velocity, but it was increased by the decrease of the liquid circulation velocity because of more biomass population in 2nd reactor.

  • PDF

Estimation of Biomass Resources Potential (바이오매스 자원 잠재량 산정)

  • Lee, Joon-pyo;Park, Soon-chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Biomass has been used for energy sources from the prehistoric age. Biomass are converted into solid, liquid or gaseous fuels and are used for heating, electricity generation or for transportation recently. Solid biofuels such as bio-chips or bio-pellet are used for heating or electricity generation. Liquid biofuels such as biodiesel and bioethanol from sugars or lignocellulosics are well known renewable transportation fuels. biogas produced from organic waste are also used for heating, generation and vehicles. Biomass resources for the production of above mentioned biofuels are classified under following 4 categories, such as forest biomass, agricultural residue biomass, livestock manure and municipal organic wastes. The energy potential of those biomass resources existing in Korea are estimated. The energy potential for dry biomass (forest, agricultural, municipal waste) were estimated from their heating value contained, whereas energy potential of wet biomass (livestock manure, food waste, waste sludge) is calculated from the biological methane potential of them on annual basis. Biomass resources potential of those 4 categories in Korea are estimated to be as follows. Forest biomass 355.602 million TOE, agricultural biomass 4.019 million TOE, livestock manure biomass 1.455 million TOE, and municipal organic waste 1.074 million TOE are available for biofuels production annually.

Isolation of Mutant Yeast Strains having Resistance to 1-ethyl-3-methylimidazolium Acetate through a Directed Evolutionary Approach (유도적 돌연변이 유발 방법을 통한 1-ethyl-3-methylimidazolium acetate에 대해 내성을 갖는 돌연변이 효모 선별)

  • Lee, Yoo-Jin;Kwon, Deok-Ho;Park, Jae-Bum;Ha, Suk-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.51-56
    • /
    • 2017
  • Cellulosic biomass is a renewable source for biofuel production from non-edible biomass. An optimized pretreatment process is required for the efficient utilization of cellulosic biomass. Among various pretreatment processes, the use of ionic liquids has been reported recently. However, the residual ionic liquid after pretreatment acts as an inhibitor of microbial fermentation. Recently, we isolated mutant Saccharomyces cerevisiae strains resistant to the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]) by using a directed evolutionary approach. When 3% [EMIM][Ac] was added to a medium containing 80 g/l of glucose, mutants D452-B2 and D452-S3 produced 35.6 g/l and 36.3 g/l of ethanol, respectively, for 18 h while the parental strain (S. cerevisiae D452-2) produced 1.3 g/l of ethanol. Thus, these mutant S. cerevisiae strains might prove advantageous when ionic liquids are used for biofuel production from cellulosic biomass.

Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility

  • Sharma, A.;Ghosh, A.;Pandey, R.A.;Mudliar, S.N.
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.216-223
    • /
    • 2015
  • The present work explores the potential of wet air oxidation (WAO) for pretreatment of mixed lignocellulosic biomass to enhance enzymatic convertibility. Rice husk and wheat straw mixture (1:1 mass ratio) was used as a model mixed lignocellulosic biomass. Post-WAO treatment, cellulose recovery in the solid fraction was in the range of 86% to 99%, accompanied by a significant increase in enzymatic hydrolysis of cellulose present in the solid fraction. The highest enzymatic conversion efficiency, 63% (by weight), was achieved for the mixed biomass pretreated at $195^{\circ}C$, 5 bar, 10 minutes compared to only 19% in the untreated biomass. The pretreatment under the aforesaid condition also facilitated 52% lignin removal and 67% hemicellulose solubilization. A statistical design of experiments on WAO process conditions was conducted to understand the effect of process parameters on pretreatment, and the predicted responses were found to be in close agreement with the experimental data. Enzymatic hydrolysis experiments with WAO liquid fraction as diluent showed favorable results with sugar enhancement up to $10.4gL^{-1}$.

Estimation of Nitrogen Storage Potential and Aboveground Biomass of Tree Species Treated with Liquid Pig Manure (양돈분뇨 처리에 따른 수목의 질소저장 및 지상부 바이오매스 추정)

  • Kim, Hyun-Chul;Yeo, Jin-Kie;Shin, Hanna;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.715-721
    • /
    • 2011
  • This study was conducted to estimate aboveground biomass and nitrogen storage potential of tree species-eight clones of a poplar and hybrids, one clone of Salix alba L., dawn redwood (Metasequoia glyptostroboides Hu and W.C. Cheng), yellow poplar (Liriodendron tulipifera L.), Okamoto maple (Acer okamotoanum Nakai), and pin oak (Quercus palustris $M{\ddot{u}}nchh.$)- after treating with liquid pig manure. Stems showed the highest percentage of aboveground biomass, and followed by branches and leaves. Nitrogen content in aboveground biomass components was the highest in leaves, and followed by branches and stems. Average aboveground biomass production was higher in the clones and species treated with manure than those of not treated, 30 ton/ha and 16 ton/ha, respectively. In the manure-treated site, clone 'Dorskamp' of Populus deltoides${\times}$Populus nigra showed the highest aboveground biomass (48.3 ton/ha). Average nitrogen storage potential was superior in the clones and species treated with manure than those of not treated, 159 kg/ha and 90 kg/ha, respectively. Clone 'Dorskamp' also showed the greatest nitrogen storage potential (286.5 kg/ha) among tested tree species. Therefore, 'Dorskamp' is the most suitable clone for treating liquid pig manure, but additional studies are needed to determine any damages or tolerance from the treatment.

BTL Pilot Process using Fe-based F-T Catalyst (철계 촉매를 이용한 BTL 파일롯 공정 연구)

  • Chae, Ho-Jeong;Jeong, Soon-Yong;Kim, Chul-Ung;Jeong, Kwang-Eun;Koh, Jae-Cheon;Kim, Tae-Wan;Park, Hyun-Joo;Lee, Sang-Bong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.804-806
    • /
    • 2010
  • Due to the depletion of fossil fuel, high oil price and global warming issue by green house gas such as CO2, clean fuel technologies using biomass, especially BTL (biomass to liquid) technology, have been greatly attracted. This paper has examined F-T catalyst and process which are two backbones of BTL technology. In addition, this paper introduces our BTL pilot plant using Fe based catalyst which has been developed recently in Korea.

  • PDF

Optimization of liquid-liquid extraction conditions for paclitaxel separation from plant cell cultures (식물세포배양으로부터 Paclitaxel 분리를 위한 액-액 추출 조건의 최적화)

  • Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.212-215
    • /
    • 2009
  • In this study, the process parameters of liquid-liquid extraction were optimized to obtain a high purity and yield of paclitaxel in a pre-purification step. The optimal solvent ratio (methylene chloride/concentrated methanol extract ratio), extraction times, mixing time, and standing time for liquid-liquid extraction were 0.28 (v/v), 3(times), 30 min, and 40 min, respectively. The polar impurities from the biomass extraction were efficiently removed by liquid-liquid extraction. The complete concentration of liquid-liquid extract by rotary evaporator was reliable enough to obtain a high purity and yield of paclitaxel for subsequent purification steps.

A comparison study of extraction methods for bio-liquid via hydrothermal carbonization of food waste

  • Bang, YeJin;Choi, Minseon;Bae, Sunyoung
    • Analytical Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.112-121
    • /
    • 2018
  • The hydrothermal carbonization method has received great attention because of the conversion process from biomass. The reaction produces various products in hydrochar, bio-liquid, and gas. Even though its yield cannot be ignored in amount, it is difficult to find research papers on bio-liquid generated from the hydrothermal carbonization reaction of biomass. In particular, the heterogeneity of feedstock composition may make the characterization of bio-liquid different and difficult. In this study, bio-liquid from the hydrothermal carbonization reaction of food wastes at $230^{\circ}C$ for 4 h was investigated. Among various products, fatty acid methyl esters were analyzed using two different extraction methods: liquid-liquid extraction and column chromatography. Different elutions with various solvents enabled us to categorize the various components. The eluents and fractions obtained from two different extraction methods were analyzed by gas chromatography with a mass spectrometer (GC/MS). The composition of the bio-liquid in each fraction was characterized, and seven fatty acid methyl esters were identified using the library installed in GC/MS device.

Separation of Acetic Acid from Simulated Biomass Hydrolysates Containing Furans by Emulsion Liquid Membranes with an Organophosphorous Extractant (유기인산계 추출제를 이용한 에멀젼형 액막법에 의해 푸란유도체를 함유하는 모사 바이오매스 가수분해액으로부터 초산의 분리)

  • Lee, Sang Cheol
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.687-693
    • /
    • 2018
  • The selective removal and recovery of fermentation inhibitors during purification of sugars from biomass hydrolysates can increase the economic efficiency of the entire process to produce bioalcohol from lignocellulosic biomass. This study investigated the effect of furans in phenols-free biomass hydrolysate on acetic acid extraction in an emulsion liquid membrane system. Under specific operating conditions, more than 99% of acetic acid could be extracted within 5 minutes, and the degrees of extraction of furfural and 5-hydroxymethylfurfural were about 10% and 4%, respectively. The extraction rate of acetic acid was also lower at a higher initial concentration of furfural in the feed phase, which was greater for furfural than 5-hydroxymethylfurfural. Thus, if furfural is first removed from the hydrolysate prior to acetic acid extraction, emulsion liquid membrane would be a more economically efficient way of removing acetic acid.