• Title/Summary/Keyword: Biomass availability

Search Result 74, Processing Time 0.023 seconds

Strategic Planning for Bioenergy Considering Biomass Availability in Rural Area (바이오매스 부존특성을 고려한 농촌지역 바이오에너지 보급전략)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.51-58
    • /
    • 2008
  • Unit costs for energy production in bioenergy facilities are dependent upon both fixed cost for facility construction and operational costs including biomass feedstock supply. With the increase of capacity, unit fixed cost could be decreased while supply cost tends to increase due to the longer transportation distance. It is desirable to take into account biomass availability in planning bioenergy facilities. A cumulative curve relationship was proposed to relate biomass availability and cumulative products of biomass amount and transportation distance. Optimum size of gasification facilities was affected by collection cost, biomass cumulative relationship. Based on biomass availability of Icheon-City, optimum sizes were about $400kW_{th}$ for gas production, and about $200kW_{el}$ for power generation. Unit cost of bioenergy production could be substantially reduced by reducing collection cost through supplying biomass from diverse sources including land development areas where significant amount of waste wood is generated. When planning bioenergy facilities, however, biomass availability and spatial distribution are key factors in determining the size of capacity.

Strategies for Increasing Biomass Energy Utilization in Rural Areas - Focusing on heating for greenhouse cultivation - (농촌지역 바이오매스 에너지 보급 활성화 전략 - 시설재배 난방을 중심으로 -)

  • Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.9-20
    • /
    • 2015
  • The demand of renewable energy is expected to grow in the long run in spite of current stable lower oil prices. Energy consumption for heating in horticulture greenhouse is large and affects the profits of the farms. This study analyzed the availability of biomass in rural area and proposed the strategies for utilizing the biomass for greenhouse heating. Data reveal the annual average fuel consumption in greenhouses is about 78 TOE/ha. Considering biomass resource in rural areas, agricultural residues are not sufficient to meet the biomass demand from greenhouses. Therefore it is recommended to secure further biomass including wild herbaceous biomass and woody biomass from forest. Based on the conditions of biomass gasification equipment investment and fuel prices, maximum allowable price of biomass turned out about 100,000 KRW/t to be competitive to kerosine. Biomass supply chain should be established for facilitating biomass trading between biomass consumers and biomass producers such as farmers who provide crop residues. An online trading system is an example of the system where consumers who utilize biomass make payments to suppliers and get the information about the biomass. Intermediate collection storages are required to store biomass from distributed sources. Operation of biomass heating systems in demonstration greenhouses is necessary to get information to refine and further develop commercial biomass heating systems. Relatively large greenhouses are desirable to have biomass heating systems for economic viability. The location of the greenhouse farms should be selected within the area where enough biomass resources are available for feeding the biomass facility.

Biomass, Primary Nutrient and Carbon Stock in a Sub-Himalayan Forest of West Bengal, India

  • Shukla, Gopal;Chakravarty, Sumit
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.12-23
    • /
    • 2018
  • Quantitative information on biomass and available nutrients are essential for developing sustainable forest management strategies to regulate atmospheric carbon. An attempt was made at Chilapatta Reserve Forest in Duars region of West Bengal to quantify its above and below ground carbon along with available "N", "P" and "K" in the soil. Stratified random nested quadrats were marked for soil, biomass and litter sampling. Indirect or non-destructive procedures were employed for biomass estimation. The amount of these available nutrients and organic carbon quantified in soil indicates that the forest soil is high in organic carbon and available "K" and medium in phosphorus and nitrogen. The biomass, soil carbon and total carbon (soil C+C in plant biomass) in the forest was 1,995.98, 75.83 and $973.65Mg\;ha^{-1}$. More than 90% of the carbon accumulated in the forest was contributed by the trees. The annual litter production of the forest was $5.37Mg\;ha^{-1}$. Carbon accumulation is intricately linked with site quality factors. The estimated biomass of $1,995.98Mg{\cdot}ha^{-1}$ clearly indicates this. The site quality factor i.e. tropical moist deciduous with optimum availability of soil nutrients, heavy precipitation, high mean monthly relative humidity and optimum temperature range supported luxuriant growth which was realized as higher biomass accumulation and hence higher carbon accumulated.

Co-Gasification of Woodchip and Plastic Waste for Producing Fuel Gas (연료용 합성가스 생산을 위한 바이오매스와 폐플라스틱의 혼합가스화)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.75-80
    • /
    • 2012
  • Gasification is a therm-chemical conversion process to convert various solid fuels into gaseous fuels under limited supply of oxygen in high temperature environment. Considering current availability of biomass resources in this country, the gasification is more attractive than any other technologies in that the process can accept various combustible solid fuels including plastic wastes. Mixed fuels of biomass and polyethylene pellets were used in gasification experiments in this study in order to assess their potential for synthesis gas production. The results showed that higher reaction temperatures were observed in mixed fuel compared to woodchip experiments. In addition, carbon monoxide, hydrogen, and methane concentrations were increased in the synthesis gas. Heating values of the synthesis gas were also higher than those from woodchip gasification. There are hundred thousand tons of agricultural plastic wastes generated in Korea every year. Co-gasification of biomass and agricultural plastic waste would provide affordable gaseous fuels in rural society.

Effect of Oyster Shell Meal on Improving Soil Microbiological Activity (굴패화석 비료 시용이 토양의 생물학적 활성에 미치는 영향)

  • Lee, Ju-Young;Lee, Chang-Hoon;Ha, Byung-Hyun;Kim, Seok-Cheol;Lee, Do-Kyoung;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.281-286
    • /
    • 2005
  • The effect of oyster shell meal, which is made of a simple crushing and alkaline calcium materials, on soil microbial properties, microbial biomass C, N and P contents, and enzyme activities were evaluated in silt loam soil. The oyster shell meal fertilizer was added at the rates of 0, 4, 8, 12 and $16Mg\;ha^{-1}$. Microbial biomass C, N and P contents were significantly increased with increasing application of oyster shell meal. Soil enzyme activities, such as urease, ${\beta}$-glucosidase and alkaline phosphomonesterase were increased significantly by shell meal application, due to increased soil pH towards neutral range and increased nutrient availability in soil. In particular, the increased microbial biomass P content and phosphomonoesterase activities were strongly correlated with available P content in soil. Conclusively, oyster shell meal fertilizer could be a good supplement to improve soil microbial activities.

Responses of weed community and soil biota to cessation of fertilization

  • Eo, Jin-U
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.317-323
    • /
    • 2010
  • Nutrient availability is a critical component of agroecosystems, and is relevant to both above- and below- ground interactions. The principal objective of this study was to determine how the cessation of fertilization affects the communities of weeds and soil organisms in a corn/wheat field. Changes in dominant weed species, substrate-induced respiration, and the population density of nematodes and microarthropods were evaluated. Microbial substrate-induced respiration (SIR) and the population density of microarthropods decreased following the cessation of fertilization and were partly correlated with the aboveground weed biomass. The cessation of organic fertilizer application but continuing application of inorganic fertilizer reduced the population density of nematodes. In response to the cessation of fertilization, weed communities were dominated by species with little dependency on fertilization. Amaranthus retroflexus was identified as the most dominant species in the corn field; however, it was replaced by Digitaria ciliaris after the cessation of fertilization. In the wheat field, the cessation of fertilization led to a rapid reduction in the biomass of most weeds, except for Vicia angustifolia, supposedly as the result of symbiotic nitrogen fixation. Additionally, the fact that weed biomass was partially correlated with SIR or the population density of microarthropods may reflect a mutual feedback between soil organisms and weeds. The results indicate that the cessation of fertilization alters communities of weeds and soil organisms through changes in weed biomass and interactions with symbiotic microorganisms.

Root Barrier and Fertilizer Effects on Soil CO2 Efflux and Cotton Yield in a Pecan-Cotton Alley Cropping System in the Southern United States

  • Lee, Kye-Han;An, Kiwan
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.2
    • /
    • pp.177-182
    • /
    • 2006
  • Little information is available on soil $CO_2$ efflux and crop yield under agroforestry systems. Soil $CO_2$ efflux, microbial biomass C, live fine root biomass, and cotton yield were measured under a pecan (Carya illinoinensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in southern USA. A belowground polyethylene root barrier was used to isolate tree roots from cotton which is to provide barrier and non-barrier treatments. The barrier and non-barrier treatment was randomly divided into three plots for conventional inorganic fertilizer application and the other three plots for organic poultry litter application. The rate of soil $CO_2$ efflux and the soil microbial biomass C were affected significantly (P < 0.05) by the fertilizer treatment while no significant effect of the barrier treatment was occurred. Cotton lint yield was significantly (P < 0.0 I) affected by the root barrier treatment while no effect was occurred by the fertilizer treatment with the yields being greatest ($521.2kg\;ha^{-1}$) in the root barrier ${\times}$ inorganic fertilizer treatment and lowest ($159.8kg\;ha^{-1}$) in the non-barrier ${\times}$ inorganic fertilizer treatment. The results suggest that the separation of tree-crop root systems with the application of inorganic fertilizer influence the soil moisture and soil N availability, which in tum will affect the magnitude of crop yield.

Analysis of Biomass Energy Potential and Density in Korea (국내(國內) 바이오매스 에너지 잠재량(潛在量) 및 밀집도(密集度) 분석(分析))

  • Kook, Jin Woo;Shin, Ji Hoon;Yoo, Ho Seong;Lee, See-Hoon
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.56-62
    • /
    • 2013
  • The biomass resources is one of promising ways to solve energy exhaustion issues and global warming issues at the same time. To evaluate domestic biomass resources potential such as agricultural wastes, forestry wastes, livestock wastes and municipal solid wastes, statistics data from various organizations were collected and analyzed in this study. Also, space energy densities of each districts in Korea were calculated and analyzed. The results from the evaluation of biomass energy potential and space energy densities in Korea might be useful to estimate the availability of biomass energy conversion processes and to choice a appropriate process to convert domestic biomass into energy.

Compensatory growth under leaf damage of herbal vine Aristolochia contorta depends on the light availability

  • Si-Hyun Park;Bo Eun Nam;Jae Geun Kim
    • Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.374-381
    • /
    • 2024
  • Background: There is a wide range of phenotypic plasticity in plants that respond to tissue damage. Compensatory growth after physical damage may function as a part of tolerance to herbivory, which is affected by resource limitations and/or damage properties. Results: Under different light availability (unshaded and shaded) and damaged leaf ontogeny (control, young leaf- and mature leaf-damaged), compensatory growth was examined for the herbal vine Aristolochia contorta. Under the unshaded treatment, compensatory growth on leaf and branch emergence was strongly induced compared to the shaded treatment. Damage to young leaves induced leaf emergence more strongly than damage to old leaves. Conclusions: It appears that light availability acted as a limiting factor in the compensatory growth of A. contorta after the damage despite its vigorous growth under the shade treatment. Under the shade, leaf damage led to altered biomass allocation as indicated by a decrease in specific leaf area and an increase in root mass fraction. The present study contributes to the understanding of the phenotypic plasticity of vine species under different environmental conditions and damaged tissue, which may differ depending on the species' habitat range.

Age Structure and Biomass of the Icefish Pseudochaenichthys georgianus Norman (Channichthyidae) Between 1976 and 2009: a Possible Link to Climate Change

  • Traczyk, Ryszard;Meyer-Rochow, Victor Benno
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.233-250
    • /
    • 2019
  • A re-assessment of the age structure of the population of the Antarctic icefish Pseudochaenichthys georgianus based on body length data covering the years 1976-2009 and including larvae and postlarvae collected in 1989 and 1990 allowed us to define age groups 0, I, and II as containing fish with respective body lengths of 6-9 cm, 15-27 cm and 27-39 cm. Age at maturity (first spawning) was found to occur in age group III at body lengths that have been falling from 50.1 cm in 1979 to 45.4 cm in 1992. Considering postlarvae together with adult fish, the v. Bertalanffy growth curve parameters were determined as L = 60.62 cm, k = 0.4, t0 = 0.25. Although the reasons for a maturity at shorter body lengths is not fully understood a host of environmental factors like increasing water temperatures and possibly changes in currents, interspecific competition, food availability, etc. are likely to be involved. Global warming (and not primarily overfishing) is likely to have been responsible for the disappearance of larger fish in the surface waters of South Georgia since 1977, for virtually all commercial fishing stopped in the early 1990s. On the other hand, the appearance of numerous younger spawning individuals suggests that larvae do survive in the colder deeper water below 200 m. The biomass of Ps. georgianus oscillates with a 4-year periodicity in contrast to that of the coexisting icefish Chaenocephalus aceratus: the former with a lower biomass in warm years and a higher one in cold years. The biomass of the third species of icefish in the region, i.e. Champsocephalus gunnari, also oscillates, but with a longer periodicity than that involved in the biology of the other two and its biomass increases in contrast to the other two species. The result is that the biomass all three species considered together is rather stable.