• Title/Summary/Keyword: Biomass Productivity

Search Result 374, Processing Time 0.028 seconds

Optimization of Outdoor Cultivation of Spirulina platensis and Control ofContaminant Organisms (Spirulina platensis의 옥외배양 최적화 및 오염생물 구제)

  • Kim, Choong-Jae;Jung, Yun-Ho;Choi, Gang-Guk;Park, Yong-Ha;Ahn, Chi-Yong;Oh, Hee-Mock
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.133-139
    • /
    • 2006
  • Outdoor cultivation of cyanobacterium Spirulina platensis was carried out for 40 days in a batch mode. A half concentration of the SOT based on the underground water was used as culture medium. Working volume was 5.7 tons with 0.2 m depth. During cultivation, mean water temperature, DO and light intensity were all in proper conditions for the S. platensis growth. The adjustment of pH to over 10 with Na2CO3 and addition of the 1.5% natural salt were very effective to delete contaminant organisms, Chlamydomonas moewusii and Chlorella minutissima occurred one after the other in the culture. The mean productivity of the biomass based on the dry cell weight from 14 to 25 days, after the contaminants were deleted, was 7.8 g ·m–2· d–1, which was relatively high productivity in that a half concentration of the SOT was used for the culture. Underground water used in the culture minimized contaminants invasion and addition of the 1.5% natural salt was effective to delete contaminants as well as acted as mineral supplement in outdoor cultivation of S. platensis. Harvesting using the floating activity of S. platensis was effective from mass floating in day time after overnight without agitation and illumination.

Enhancement of Growth and Secondary Metabolite Biosynthesis: Effect of Elicitors Derived from Plants and Insects

  • Jeong Gwi-Taek;Park Don-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • Plant-derived natural products have been and will continue to be valuable sources. Elicitors have been employed to modify cell metabolism in order to enhance the productivity of useful metabolites in plant cell/tissue cultures. In this study, several elicitors were used to improve the productivity of useful metabolites and to reduce culture time for archiving high concentration in P. ginseng hairy root cultures. The addition of chitosan, chitosan oligosaccharide and alginate oligosaccharide to the culture of P. ginseng hairy roots caused growth to be inhibited with the increase in elicitor concentration. The usage of the chitosan elicitor and D-glucosamine caused a slight decrease in hairy root growth, whereas total ginseng saponin accumulated slightly with the increase in elicitor concentration. When gel beads were added to the culture medium at the initial period, hairy root growth was enhanced. The maximum growth was 1.35 times higher than that of the control at $1\%$ (w/v). Total ginseng saponin content decreased due to the addition of alginate beads. This would result in consistent diffusion of lower levels of calcium ions during the culture period that promotes biomass growth.

Simulating Evapotranspiration and Yield Responses of Rice to Climate Change using FAO-AquaCrop (FAO-AquaCrop을 이용한 기후변화가 벼 증발산량 및 수확량에 미치는 영향 모의)

  • Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.57-64
    • /
    • 2010
  • The impacts of climate change on yield and evapotranspiration of rice have been modeled using AquaCrop model developed by Food and Agriculture Organization (FAO). Climate change scenario downscaled by Mesoscale Model 5 (MM5) regional model from ECHO-G General Circulation Model (GCM) outputs by Korea Meteorological Research Institute (METRI) was used in this study. Monthly average climate data for baseline (1971-2000) and three time periods (2020s, 2050s and 2080s) were used as inputs to the AquaCrop model. The results showed that the evapotranspiration after transplanting was projected to increase by 4 % (2020s), 8 % (2050s) and 14 % (2080s), respectively, from the baseline value of 464 mm. The potential rice yield was 6.4 t/ha and water productivity was 1.4 kg/$m^3$ for the baseline. The potential rice yield was projected to increase by 23 % (2020s), 55 % (2050s), and 98 % (2080s), respectively, by the increased photosynthesis along with the $CO_2$ concentration increases. The water productivity was projected to increase by 19 % (2020s), 44 % (2050s), and 75 % (2080s), respectively.

Bioethanol Production from Macroalgal Biomass (해조류 바이오매스를 이용한 바이오에탄올 생산기술)

  • Ra, Chae Hun;Sunwoo, In Young;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.976-982
    • /
    • 2016
  • Seaweed has high growth rate, low land usage, high CO2 absorption and no competition for food resources. Therefore, the use of lignin-free seaweed as a raw material is arising as a third generation biomass for bioethanol production. Various pretreatment techniques have been introduced to enhance the overall hydrolysis yield, and can be categorized into physical, chemical, biological, enzymatic or a combination. Thermal acid hydrolysis pretreatment is one of the most popular methods to attain high sugar yields from seaweed biomass for economic reasons. At thermal acid hydrolysis conditions, the 3,6-anhydro-galactose (AHG) from biomass could be converted to 5-hydroxymethylfurfural (HMF), which might inhibit the cell growth and decrease ethanol production. AHG is prone to decomposition into HMF, due to its acid-labile character, and subsequently into weak acids such as levulinic acid and formic acid. These inhibitors can retard yeast growth and reduce ethanol productivity during fermentation. Thus, the carbohydrates in seaweed require effective treatment methods to obtain a high concentration of monosaccharides and a low concentration of inhibitor HMF for ethanol fermentation. The efficiency of bioethanol production from the seaweed biomass hydrolysate is assessed by separate hydrolysis and fermentation (SHF). To improve the efficiency of the ethanol fermentation of mixed monosaccharides, the adaptation of yeast to high concentration of sugar could make simultaneous utilization of mixed monosaccharides for the production of ethanol from seaweed.

Relationship of Initial Density, Biomass and Tuber Productivity of Scirpus planiculmis in the Nakdong River Estuary (낙동강 하구 새섬매자기 초기밀도, 생체량과 괴경량의 관계)

  • Yi, Yong Min;Yeo, Un Sang;Sung, Kijune
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Scirpus planiculmis dominated in Nakdong river estuary is known as food for birds visiting to Nakdong river estuary and plays an important role in material cycle and food web, while repeating growth and production, decomposition process in 1-year interval. Therefore, if it is able to predict effectively biomass or tuber production of Scirpus planiculmis which is food source for estuarine organisms or birds, it can provide very useful information on the Nakdong river estuary management. In this study, regression equation that can predict the tuber production, food for birds, was obtained using initial density of Scirpus planiculmis that can minimize the disturbance of ecosystem and is faster and easier. The correlation analysis results show that density, biomass and tuber production have liner relationship(p<0.001) with 0.6103~0.9950 of correlation coefficients. In addition, the regression equations have high coefficients of determination of 0.3696~0.7145 and it shows that it is able to predict biomass or tuber production while using the estimated regression equation obtained from relationship among the initial density, biomass and tuber production. The results of this study are expected to utilize effectively the management of estuary ecosystem such as management on food source for migratory birds visiting to Nakdong river estuary.

Long-term Effects on Forest Biomass under Climate Change Scenarios Using LANDIS-II - A case study on Yoengdong-gun in Chungcheongbuk-do, Korea - (산림경관천이모델(LANDIS-II)를 이용한 기후변화 시나리오에 따른 산림의 생물량 장기변화 추정 연구 -충청북도 영동군 학산면 봉소리 일대 산림을 중심으로 -)

  • Choi, Young-Eun;Choi, Jae-Yong;Kim, Whee-Moon;Kim, Seoung-Yeal;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.27-43
    • /
    • 2019
  • This study applied the LANDIS-II model to the forest vegetation of the study area in Yeongdong-gun, Korea to identify climate effects on ecosystems of forest vegetation. The main purpose of the study is to examine the long-term changes in forest aboveground biomass(AGB) under three different climate change scenarios; The baseline climate scenario is to maintain the current climate condition; the RCP 4.5 scenario is a stabilization scenario to employ of technologies and strategies for reducing greenhouse gas emissions; the RCP 8.5 scenario is increasing greenhouse gas emissions over time representative with 936ppm of $CO_2$ concentration by 2100. The vegetation survey and tree-ring analysis were conducted to work out the initial vegetation maps and data for operation of the LANDIS model. Six types of forest vegetation communities were found including Quercus mongolica - Pinus densiflora community, Quercus mongolica community, Pinus densiflora community, Quercus variabilis-Quercus acutissima community, Larix leptolepis afforestation and Pinus koraiensis afforestation. As for changes in total AGB under three climate change scenarios, it was found that RCP 4.5 scenario featured the highest rate of increase in AGB whereas RCP 8.5 scenario yielded the lowest rate of increase. These results suggest that moderately elevated temperatures and $CO_2$ concentrations helped the biomass flourish as photosynthesis and water use efficiency increased, but huge increase in temperature ($above+4.0^{\circ}C$) has resulted in the increased respiration with increasing temperature. Consequently, Species productivity(Biomass) of trees decrease as the temperature is elevated drastically. It has been confirmed that the dominant species in all scenarios was Quercus mongolica. Like the trends shown in the changes of total AGB, it revealed the biggest increase in the AGB of Quercus mongolica under the RCP 4.5 scenario. AGB of Quercus mongolica and Quercus variabilis decreased in the RCP 4.5 and RCP 8.5 scenarios after 2050 but have much higher growth rates of the AGB starting from 2050 under the baseline scenario. Under all scenarios, the AGB of coniferous species was eventually perished in 2100. In particular they were extinguished in early stages of the RCP 4.5 and RCP 8.5 scenarios. This is because of natural selection of communities by successions and the failure to adapt to climate change. The results of the study could be expected to be effectively utilized to predict changes of the forest ecosystems due to climate change and to be used as basic data for establishing strategies for adaptation climate changes and the management plans for forest vegetation restoration in ecological restoration fields.

Improvement of Alcohol Productivity by Means of Repeated Batch Fermentation (반복적인 회분식 발효공정을 이용한 에탄올 생산성의 향상)

  • 김휘동;민경호허병기
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 1995
  • The functional relationship between the initial cell concentration and the ethanol productivity was investigated in the repeated batch fermentation of Sacharomyces cerevisiae ATCC 24858. The repeated batch fermentations were performed in the range of 60 to $150g/\ell$ of initial sugar concentration and 17.5g/$\ell$ to $53.1g/\ell$ of initial cell concentration. The time of one batch fermentation was 1 or 2 hours and the batch fermentation was repeated ten times in every repeated formentaction. The functional relationship showed that the productivity increased non-linearly according to the increase of initial cell concentration regardless of initial sugar concentration. When the initial concentration of sugar was $60g/\ell$ and that of biomass was $34.5g/\ell$, the fermentation was completed within one hour and its ethanol productivity was $26.7g/\ell$.hr, the latter including the times of cell separation, pouring the new substrate into a flask and sampling. When the initial sugar concentration was $120g/\ell$ and the initial cell concentration $50.3g/\ell$, the fermentation was also finished within one hour and its productivity was $45.8g/\ell$$.$hr, The maximum ethanol productivity for eight different repealed fermentations in this work was $53g/\ell$.hr.

  • PDF

Screening and Characterization of Oleaginous Microalgal Species from Northern Xinjiang

  • Wu, Lei;Xu, Liangliang;Hu, Chunxiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.910-917
    • /
    • 2015
  • A total of 646 strains, including green algae and diatoms, were isolated from 220 samples to screen microalgae with high lipid productivity (LP). The samples were obtained from nine habitats in Northern Xinjiang, China in June 2013. This study initially identified eight lipidrich strains, namely, Desmodesmus intermedius XJ-498, D. intermedius XJ-145, D. intermedius XJ-99, Monoraphidium pusillum XJ-489, M. dybowskii XJ-435, M. dybowskii XJ-151, Mychonastes homosphaera XJ-488, and Podohedriella falcata XJ-176, based on 18S rDNA sequencing. The strains were cultured in a photobioreactor for the same period. Results showed that the specific growth rate (day-1) of M. pusillum XJ-489 was the highest (1.14 ± 0.06), and the biomass concentration (g/l) of D. intermedius XJ-99 was the highest (2.84 ± 0.3). Futhermore, the lipid content (%) of M. dybowskii XJ-151 was the highest (33.5 ± 4.38), and the lipid productivity (mg l-1 day-1) of My. homosphaera XJ-488 was the highest (86.41 ± 9.04). C16 to C18 accounted for 86% to 98% of the total lipid, and the biodiesel qualities of the selected algae corresponded to international standards. This study suggests that My. homosphaera XJ-488, D. intermedius XJ-99, and M. dybowskii XJ-151 are the most potential strains for biodiesel production among all the isolated strains.

Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production

  • Kim, Garam;Mujtaba, Ghulam;Lee, Kisay
    • ALGAE
    • /
    • v.31 no.3
    • /
    • pp.257-266
    • /
    • 2016
  • Nitrogen is one of the most critical nutrients affecting cell growth and biochemical composition of microalgae, ultimately determining the lipid or carbohydrate productivity for biofuels. In order to investigate the effect of nitrogen sources on the cell growth and biochemical composition of the marine microalga Tetraselmis sp., nine different N sources, including NaNO3, KNO3, NH4NO3, NH4HCO3, NH4Cl, CH3COONH4, urea, glycine, and yeast extract were compared at the given concentration of 8.82 mM. Higher biomass concentration was achieved under organic nitrogen sources, such as yeast extract (2.23 g L−1) and glycine (1.62 g L−1), compared to nitrate- (1.45 g L−1) or ammonium-N (0.98 g L−1). All ammonium sources showed an inhibition of cell growth, but accumulated higher lipids, showing a maximum content of 28.3% in ammonium bicarbonate. When Tetraselmis sp. was cultivated using yeast extract, the highest lipid productivity of 36.0 mg L−1 d−1 was achieved, followed by glycine 21.5 mg L−1 d−1 and nitrate 19.9 mg L−1 d−1. Ammonium bicarbonate resulted in the lowest lipid productivity of 14.4 mg L−1 d−1. The major fatty acids in Tetraselmis sp. were palmitic, oleic, linoleic and linolenic acids, regardless of the nutritional compositions, indicating the suitability of this species for biodiesel production.

Net Energy Analysis for Protected Vegetable Production System (시설채소 생산시스템의 순 에너지 분석)

  • 홍지형
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.55-64
    • /
    • 1995
  • This paper presents analytic results of energy sequestered for the forcing cultural Cu- cumber and the others production system with the input-output tables method in the suthern parts of Korea. In this study an attempt is made to evaluate input of direct and indirect energy, output of yield energy and net energy in order to achieve increased energy productivity under P E greenhouse. Cultural practices were grouped soil and soilless with perlite for vegetable production. The results from this study are summarized as follows : 1. Total energy inputs in cucumber production were calculated to be 510 GJ/l0a(di- rect energy : 480 GJ/lOa, indirect energy : 30 GJ/lOa) from soil culture and 440 GJ/ 10a(direct energy : 420 GJ/lOa, indirect energy : 20 GJ/lOa) from soilless culture in perlite hydroponics. 2. Energy outputs from cucumber and biomass were 7 GJ/lOa and 120 GJ/lOa at a uniform rate respectively. 3. Heating fuel as diesel is a major energy inputs approaching 90% of the total energy requirements for cucumber production. 4. Net energy in cucumber production was calculated to be 503 GJ/lOa from soil cul- ture and 431 GJ/lOa from soilless culture. Net energy productivity was maintained costantly as 0.98. 5. Energy productivity in cucumber was calculated to be 0.029 kg/MJ from soil culture and 0.043kg/MJ from soilless culture, while energy efficiency was 0.012 and 0.015 respectively. It is expected that a soilless cultural production system seems to be reduc- tive in seguestered energy input by 13%.

  • PDF