• Title/Summary/Keyword: Biomass Conversion

Search Result 243, Processing Time 0.025 seconds

Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review

  • Puligundla, Pradeep;Oh, Sang-Eun;Mok, Chulkyoon
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Lignocellulosic biomass conversion to biofuels such as ethanol and other value-added bio-products including activated carbons has attracted much attention. The development of an efficient, cost-effective, and eco-friendly pretreatment process is a major challenge in lignocellulosic biomass to biofuel conversion. Although several modern pretreatment technologies have been introduced, few promising technologies have been reported. Microwave irradiation or microwave-assisted methods (physical and chemical) for pretreatment (disintegration) of biomass have been gaining popularity over the last few years owing to their high heating efficiency, lower energy requirements, and easy operation. Acid and alkali pretreatments assisted by microwave heating meanwhile have been widely used for different types of lignocellulosic biomass conversion. Additional advantages of microwave-based pretreatments include faster treatment time, selective processing, instantaneous control, and acceleration of the reaction rate. The present review provides insights into the current research and advantages of using microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to fermentable sugars in the process of cellulosic ethanol production.

Biomass Conversion Efficiencies of Fish Pond Fertilization and Feed Supplementation

  • Mahboob, Shahid;Sheri, A.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.2
    • /
    • pp.192-195
    • /
    • 1998
  • Biomass conversion efficiencies (B.C.E) of six fish species viz, Catla catla, Labeo, rohita, Cirrhina mrigala, Hypophthalmicthys molitrix, Ctenopharyngodon idella and Cyprinus carpio cultured under artificial feed (T1), broiler manure (T2), buffalo manure (T3), N:P:K (25:25:0) (T4) and control pond (T5) have been determined for the period of one year. The overall biomass conversion efficiencies under the influence of T2, T3, and T4 were statistically similar. However, the best (0.40) efficiency was determined under feed supplement-ation (T1).

Biomass to Energy: Renewable Fuel Production Processes for Clean Combustion (바이오매스 에너지화: 청정 연소를 위한 신재생 연료 생산 공정)

  • Jeong, Jaeyong;Kim, Youngdoo;Yang, Won;Lee, Uendo;Jeong, Suhwa;Bang, Byungryul;Moon, Jihong;Hwang, Jeongho;Chang, Wonsuk
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.285-285
    • /
    • 2015
  • Utilization of biomass as a substitute fuel for conventional energy systems have been grown larger everyday in the world. In particular, co-firing of biomass in a large coal power plant are common in Korea after the introduction of RPS since 2012, and the application of biomass-derived fuel is now spreading to district heating and power, industrial energy supply, and transportation sectors. For biomass to energy, appropriate conversion process is needed to satisfy the fuel requirements of a specific energy system. In this study, various kinds of thermochemical conversion technologies will be presented for renewable fuel productions from biomass.

  • PDF

Biomass Energy Potential of Wood Waste due to Forest Land Conversion (산림전용에 따른 폐잔목의 임산바이오에너지 잠재적 공급량 분석)

  • Kwon, Soon-Duk;Son, Yeong-Mo;Park, Young-Kyu
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.16-21
    • /
    • 2006
  • This study aimed to assess biomass energy resources available from waste wood due to forest land conversion. Forest land area of 7,806ha on annul average during 2001-2005 was converted to other land use and the growing stock of $266,551m^3$ was felled annually due to the conversion. Biomass energy potential of waste wood due to forest land conversion was estimated to 102,325 tons of biomass on annual average during 2001-2005 of which 57,945 tons were from coniferous forest and 44,379 tons were from broadleaved forest. Biomass energy Potential Per unit area Per year increased for the same period and was estimated to 13.0 tons of biomass on annual average.

  • PDF

Estimation of Forest Biomass for Muju County using Biomass Conversion Table and Remote Sensing Data (산림 바이오매스 변환표와 위성영상을 이용한 무주군의 산림 바이오매스추정)

  • Chung, Sang Young;Yim, Jong Su;Cho, Hyun Kook;Jeong, Jin Hyun;Kim, Sung Ho;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.4
    • /
    • pp.409-416
    • /
    • 2009
  • Forest biomass estimation is essential for greenhouse gas inventories and terrestrial carbon accounting. Remote sensing allows for estimating forest biomass over a large area. This study was conducted to estimate forest biomass and to produce a forest biomass map for Muju county using forest biomass conversion table developed by field plot data from the 5th National Forest Inventory and Landsat TM-5. Correlation analysis was carried out to select suitable independent variables for developing regression models. It was resulted that the height class, crown closure density, and age class were highly correlated with forest biomass. Six regression models were used with the combination of these three stand variables and verified by validation statistics such as root mean square error (RMSE) and mean bias. It was found that a regression model with crown closure density and height class (Model V) was better than others for estimating forest biomass. A biomass conversion table by model V was produced and then used for estimating forest biomass in the study site. The total forest biomass of the Muju county was estimated about 8.8 million ton, or 128.3 ton/ha by the conversion table.

Biomass Expansion Factors for Pinus koraiensis Forests in Korea

  • Li, Xiaodong;Yi, Myong-Jong;Jeong, Mi-Jeong;Son, Yo-Whan;Park, Pil-Sun;Lee, Kyeong-Hak;Son, Yeong-Mo;Kim, Rae-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.693-697
    • /
    • 2010
  • Biomass expansion factors that convert the timber volume (or dry weight) to biomass are used to estimate the forest biomass and account for the carbon budget on a national and regional scale. This study estimated the biomass conversion and expansion factors (BCEF), root to shoot ratio (R), biomass expansion factors (BEF) and ecosystem biomass expansion factor (EBEF) of Korean pine (Pinus koraiensis) forests based on direct field surveys and publications in Korea. The mean BCEF, BEF, and R was 0.6438 Mg $m^{-3}$ (n = 7, SD = 0.1286), 1.6380 (n = 27, SD = 0.1830), and 0.2653 (n = 14, SD = 0.0698), respectively. The mean EBEF, which is a simple method for estimating the understory biomass in Korean pine forest ecosystems, was 1.0218 (n = 6, SD = 0.0090). The values of the biomass expansion factors in this study estimated the Korean pine forest biomass with more precision than the default values given by the IPCC (2003, 2006).

Investigation on Regional Distribution of Potential Energy Production with Agricultural By-Products in Agricultural Sector

  • Park, Woo-Kyun;Lee, Sun-Il;Shin, Joung-Du;Kim, Gun-Yeob;Kim, Yi-Hyun;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.343-350
    • /
    • 2013
  • The objectives of this study were to estimate the potential biomass yield by using the biomass conversion index and evaluate the potential energy production by using the energy conversion index of biomass. Estimating the total biomass yield in Korea showed 9,646.3 thousand tons produced in 2012. Subsequent evaluation of the potential energy production using the estimated biomass yield in 2012 indicated that the calorific values were varied from 3,800 to 4,500 kcal $kg^{-1}$ for crop- and from 4,100 to 4,300 kcal $kg^{-1}$ for woody-based biomass, respectively. Among the examined biomass materials, the pruned branch of a nut tree appeared to be the greatest in bio-energy production showing 6,300 kcal $kg^{-1}$ in calorific value. Total potential energy production from agricultural by-products was estimated approximately at 3,966,000 TOE. Among the agricultural by-products examined, rice straw showed the greatest energy production potential being at 2,321,000 TOE. Furthermore, it might contribute to establishing the countermeasures of biomass utility in agricultural sector based on regional distribution chart of the potential biomass and energy yields in Korea.

아세톤을 사용한 목질계 바이오매스의 가용매 분해에 대한 연구

  • Lee, Hong-Seon;Yun, Seong-Uk;Lee, Byeong-Hak
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.216-219
    • /
    • 2000
  • Pyrolysis products of woody biomass were consistedofvarious linear hydrocarbon, aromatics or condensed cyclic compounds. In order to obtain biomass pyrolysis products, more equipments and time were needed. But solvolysis of woody biomass with acetone easily obtained decomposition products and enhanced conversion rate(18.72%, max.) from woody biomass than pyrolysis of woody biomass. Beacause solvolysis with acetone improved conversion rate (26.64%, max.) of lignin. the whole conversion rate was improved. But above $300^{\circ}C$, lignin showed lower conversion rate, so the whole conversion rate decreased. Solvolysis products of woody biomass with acetone were same as pyrolysis products. Above $400^{\circ}C$, methoxy phenols were completely disappeared.

  • PDF

Current Status and Prospects on Biofuel Conversion Technologies and Facilities, Using Lignocellulosic Biomass (목질계 바이오연료 생산을 위한 산업화 기술 및 전망)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.622-628
    • /
    • 2016
  • This study investigated to understand the trend of international commercializing technologies and industrial status of the transportation biofuel based on lignocellulosic biomass. Two major commercializing technologies for the lignocellulosic biofuel are biochemical conversion technology and thermochemical conversion technology. It was reported that a total of 93 industrial companies were using lignocellulosic biomass of all facilities related to advanced biofuel. On the basis of commercial type, the biochemical conversion technology was identified to be the major technology in the lignocellulosic biofuel industries, showing 84% of all. Also the main products of commercial type industrial companies are bioethanol (1,155,000 tons/yr) and bio-oil (120,000 tons/yr), which are in a remarkably inadequate amount to substitute for the transportation biofuel worldwide. It was suggested that the transportation biofuel market was currently in need of further development in both technology and scale, and was in high demands of technological development and commercializing exertion.

Synthesis of Renewable Jet Fuel Precursors from C-C Bond Condensation of Furfural and Ethyl Levulinate in Water

  • Cai, Chiliu;Liu, Qiying;Tan, Jin;Wang, Tiejun;Zhang, Qi;Ma, Longlong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.519-526
    • /
    • 2016
  • Biomass derived jet fuel is proven as a potential alternative for the currently used fossil oriented energy. The efficient production of jet fuel precursor with special molecular structure is prerequisite in producing biomass derived jet fuel. We synthesized a new jet fuel precursor containing branched $C_{15}$ framework by aldol condensation of furfural (FA) and ethyl levulinate (EL), where the latter of two could be easily produced from lignocellulose by acid catalyzed processes. The highest yield of 56% for target jet fuel precursor could be obtained at the optimal reaction condition (molar ratio of FA/EL of 2, 323 K, 50 min) by using KOH as catalyst. The chemical structure of $C_{15}$ precursor was specified as (3E, 5E)-6-(furan-2-yl)-3-(furan-2-ylmethylene)-4-oxohex-5-enoic acid ($F_2E$). For stabilization, this yellowish solid precursor was hydrogenated at low temperature to obtain C=C bonds saturated product, and the chemical structure was proposed as 4-oxo-6-(tetrahydrofuran-2-yl)-3-(tetrahydrofuran-2-yl)-methyl hexanoic acid ($H-F_2E$). The successful synthesis of the new jet fuel precursors showed the significance that branched jet fuel could be potentially produced from biomass derived FA and EL via fewer steps.