Biomass Expansion Factors for Pinus koraiensis Forests in Korea

  • Li, Xiaodong (Department of Forest Resources, Kangwon National University) ;
  • Yi, Myong-Jong (Department of Forest Resources, Kangwon National University) ;
  • Jeong, Mi-Jeong (Department of Forest Resources, Kangwon National University) ;
  • Son, Yo-Whan (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Park, Pil-Sun (Department of Forest Sciences, Seoul National University) ;
  • Lee, Kyeong-Hak (Korean Forest Research Institute) ;
  • Son, Yeong-Mo (Korean Forest Research Institute) ;
  • Kim, Rae-Hyun (Korean Forest Research Institute)
  • Received : 2010.06.21
  • Accepted : 2010.08.12
  • Published : 2010.10.30

Abstract

Biomass expansion factors that convert the timber volume (or dry weight) to biomass are used to estimate the forest biomass and account for the carbon budget on a national and regional scale. This study estimated the biomass conversion and expansion factors (BCEF), root to shoot ratio (R), biomass expansion factors (BEF) and ecosystem biomass expansion factor (EBEF) of Korean pine (Pinus koraiensis) forests based on direct field surveys and publications in Korea. The mean BCEF, BEF, and R was 0.6438 Mg $m^{-3}$ (n = 7, SD = 0.1286), 1.6380 (n = 27, SD = 0.1830), and 0.2653 (n = 14, SD = 0.0698), respectively. The mean EBEF, which is a simple method for estimating the understory biomass in Korean pine forest ecosystems, was 1.0218 (n = 6, SD = 0.0090). The values of the biomass expansion factors in this study estimated the Korean pine forest biomass with more precision than the default values given by the IPCC (2003, 2006).

Keywords

References

  1. Avery, T.E. and Burkhart, H.E. 1983. Forest Measurements, 3rd edn. McGraw-Hill, New York.
  2. Brown, S., Gillespie, A.J.R. and Lugo, A.E. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science 35: 881-902.
  3. Brown, S.L., Schroeder, P. and Kern, J.S. 1999. Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management 123: 81-90. https://doi.org/10.1016/S0378-1127(99)00017-1
  4. Choi, S.-D., Lee, K. and Chang, Y.-S. 2002. Large rate of uptake of atmospheric carbon dioxide by planted forest biomass in Korea. Global Biogeochemical Cycles 16(4), 1089, doi: 10.1029/2002GB001914.
  5. Camp, N.V., Walle, I.V., Mertens, J., Neve, S.D., Samson, R., Lust, N., Lemeur, R., Boeckx, P., Lootens, P., Beheydt, D., Mestdagh, I., Sleutel, S., Verbeeck, H., Cleemput, O.V., Hofman, G. and Carlier, L. 2004. Inventory-based carbon stock of Flemish forest: a comparison of European biomass expansion factors. Annals of Forest Science 61: 677-682. https://doi.org/10.1051/forest:2004066
  6. Fang, J.Y. and Wang, Z.M. 2001. Forest biomass estimation at regional and global levels, with special reference to China's forest biomass. Ecological Research 16: 587-592. https://doi.org/10.1046/j.1440-1703.2001.00419.x
  7. Fang, J.Y., Chen, A.P., Peng, C., Zhao, S.Q. and Ci, L.J. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292: 2320-2322. https://doi.org/10.1126/science.1058629
  8. Fang, J.Y., Oikawa, T., Kato, T., Mo, W. and Wang, Z.H. 2005. Biomass carbon accumulation by Japan's forests from 1947 to 1995. Global Biogeochemical Cycles 19, GB2004, doi: 10.1029/2004GB002253.
  9. IPCC. 2003. Good practice guidance for land use, landuse change and forestry, Prepared by the National Greenhouse Gas Inventories Programme, Peman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. and Wagner, F. (eds). Published: IGES, Japan.
  10. IPCC. 2006. Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T. and Tanabe, K. (eds). Published: IGES, Japan.
  11. Jalkanen, A., Makipaa, R., Stahl, G., Lehtonen, A. and Petersson, H. 2005. Estimation of the biomass stocks of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors. Annals of Forest Science 62: 845-851. https://doi.org/10.1051/forest:2005075
  12. Kim, K.D. and Kim, C.M. 1988. Research trends on forest biomass production in Korea. Journal of Korean Forest Energy 8: 94-107.
  13. Kwon, K.-C. and Lee, D.K. 2006. Biomass and energy content of Pinus koraiensis stand planted in Mt. Wolak. Mokchae Konghak 34: 66-75.
  14. Korea Forest Service. 2009. Stem volume table, Seoul, Republic of Korea.
  15. Lee, D.K., Lee, K.J., Shin, J.H. and Lee, K.H. 1987. Biomass production and nutrient cycling of forest ecosystem in central region of Korea. Journal of Korean Forest Energy 7: 15-32.
  16. Lee D.K. and Kim, G.T. 1997. Tree form and biomass allocation of Quercus species, Larix leptolepis (Sieb. et Zucc.) Gordon and Pinus koraiensis Sieb. et Zucc. in Kwangju-Gun, Kyunggi-Do. Journal of Korean Forest Society 86(2): 208-213.
  17. Lehtonen, A., Makipaa, R., Heikkinen, J., Sievanen, R. and Liski, J. 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. https://doi.org/10.1016/j.foreco.2003.07.008
  18. Luo, Y.-J., Zhang, X.-Q., Hou, Z.-H., Yu, P.-T. and Zhu, J.-H. 2007. Biomass carbon accounting factors of Larix forests in China based on literature data. Journal of Plant Ecology 31: 1111-1118. https://doi.org/10.17521/cjpe.2007.0139
  19. Nabuurs, G.J., Goodale, C., Schelhaas, M.J., Mohren, G.M.J. and Field, C.B. 2003. Temporal evolution of the European forest sector carbon sink from 1950 to 1999. Global Change Biology 9: 152-160. https://doi.org/10.1046/j.1365-2486.2003.00570.x
  20. Noh, N.J., Son, Y.H., Kim, R.H., Seo, K.Y., Seo, K.W., Koo, J.W., Kyung, J.H., Kim, J.S., Lee, Y.J., Park, I.H., Lee, K.H. and Son, Y.M. 2005. Biomass of Korean pine (Pinus koraiensis) in Gapyeong area. Korean Journal of Forest Measurements 8: 75-82.
  21. Schroeder, P., Brown, S., Mo, J., Birdsey, R. and Cieszewski, C. 1997. Biomass estimation for temperate broadleaf forests of the United States using inventory data. Forest Science 43: 424-434.
  22. Son, Y.H., Hwang, J.W., Kim, Z.S., Lee, W.K. and Kim, J.S. 2001. Allometry and biomass of Korean pine (Pinus koraiensis) in central Korea. Bioresource Technology 78: 251-255. https://doi.org/10.1016/S0960-8524(01)00012-8
  23. Son, Y.H., Seo, K.Y., Kim, R.H., Koo, J.W., Yi, M.J. and Kim, J.H. 2005. Biomass and nutrient distribution of Pinus Koraiensis seedlings invading a mixed forest dominated by Quercus mongolica. Forest Science and Technology 1: 8-12. https://doi.org/10.1080/21580103.2005.9656262
  24. Son, Y.M., Lee, K.H. and Kim, R.H. 2007a. Estimation of forest biomass in Korea. Journal of Korean Forest Society 96(4): 477-482.
  25. Son, Y.H., Noh, N.J., Kim, R.H., Koo, J.W. and Yi, M.J. 2007b. Biomass and nutrients of planted and naturally occurring Pinus koraiensis in Korea. Eurasian Journal of Forest Research 10: 41-50.
  26. Somogyi, Z., Cienciala, E., Makipaa, R., Muukkonen, P., Lehtonen, A. and Weiss, P. 2007. Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research 126: 197-207. https://doi.org/10.1007/s10342-006-0125-7
  27. Statistical Yearbook of Forestry. 2008. Korean Forest Service, Seoul, Republic of Korea.
  28. Turner, D.P., Koepper, G.J., Harmon, M.E. and Lee, J.J. 1995. A carbon budget for forests of the conterminous United States. Ecological Applications 5: 421-436. https://doi.org/10.2307/1942033
  29. Yi, M.J. 1998. Changes in aboveground biomass and nutrient accumulation of Korean-pine (Pinus koraiensis) Plantation by stand age at Kangwondo province. Journal of Korean Forest Society 87(2): 276-285.