• Title/Summary/Keyword: Biomarker detection

Search Result 162, Processing Time 0.026 seconds

Noninvasive molecular biomarkers for the detection of colorectal cancer

  • Kim, Hye-Jung;Yu, Myeong-Hee;Kim, Ho-Guen;Byun, Jong-Hoe;Lee, Cheolju
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.685-692
    • /
    • 2008
  • Colorectal cancer (CRC) is the third most common malignancy in the world. Because CRC develops slowly from removable precancerous lesions, detection of the disease at an early stage during regular health examinations can reduce both the incidence and mortality of the disease. Although sigmoidoscopy offers significant improvements in the detection rate of CRC, its diagnostic value is limited by its high costs and inconvenience. Therefore, there is a compelling need for the identification of noninvasive biomarkers that can enable earlier detection of CRC. Accordingly, many validation studies have been conducted to evaluate genetic, epigenetic or protein markers that can be detected in the stool or in serum. Currently, the fecal-occult blood test is the most widely used method of screening for CRC. However, advances in genomics and proteomics combined with developments in other relevant fields will lead to the discovery of novel non invasive biomarkers whose usefulness will be tested in larger validation studies. Here, non-invasive molecular biomarkers that are currently used in clinical settings and have the potential for use as CRC biomarkers are discussed.

Detection of Urinary 8-Hydroxyguanine Adduct as Exposure Biomarker for Oxidative Stress (산화적스트레스에 대한 노출척도로서 뇨중 8-Hydroxyguanine Adduct의 측정)

  • 유아선;김윤신;모인필;마응천;조명행
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.515-523
    • /
    • 1998
  • Oxidative stress by reactive oxygen species (ROS) damages cellular DNA, RNA, proteins, lipids and others causing various diseases such as cancer, arthritis, and heart diseases. 8-Hydroxyguanine (8-OHG) is one of the products formed from DNA or RNA damaged by ROS. Since high amounts of 8-OHG can be excreted in urine, it may serve as a potential biomarker indicating the level of oxidative damage to nucleic acids. Residents in industrial area with severe air pollution are expected to be affected by higher level of oxidative stress from pollutants like polyaromatic hydrocarbons (PAHs), etc. Smokers are also expected to be damaged by higher level of oxidative stress from cigarette smoke components like PAHs than non-smokers. To examine if the determination of the urinary concentration of 8-OHG could be used as exposure biomarker for the oxidative stress caused by air-pollutants, this study was performed to determine and compare the urinary concentrations of 8-OHG in smokers and non-smokers, or non-polluted area residents and polluted area residents. Urine samples were collected and purified by a strong cation exchange and cellulose partition column, then analyzed by HPLC with electrochemical detector at 600 ㎷ potential. Concentrations of urinary 8-OHG in non-smokers and smokers of Seoul area college male students were determined as 15.12$\pm$9.68 (ng/mg creatinine) and 34.72$\pm$11.72 (ng/mg creatinine), respectively, showing significantly higher level of 8-OHG in smokers than in non-smokers. Urine samples of elementary school students were collected from Sokcho area, which is known to be non-polluted, and 3 representative polluted areas; Yocheon industrial area, Ulsan urban and Ulsan industrial area. The concentrations of 8-OHG in these samples were 12.42$\pm$8.27 (ng/ mg creatinine, Sokcho), 22.55$\pm$9.12 (ng/mg creatinine, Yocheon), 17.41$\pm$2.30 (ng/mg creatinine, Ulsan urban), 55.04$\pm$39.73 (ng/mg creatinine, Ulsan industrial). Thus, samples from polluted area tend to have higher level of 8-OHG and the levels of Yocheon and Ulsan industrial area were significantly higher than that of Sokcho area. The results indicate that the residents of polluted industrial area or smokers are more severely exposed to oxidative stress probably caused by air pollutants like PAHs. Thus, the determination of urinary 8-OHG concentration could be used as biomarker for the extent of body exposure to oxidative stress caused by various pollutants.

  • PDF

Platelets as a Source of Peripheral Aβ Production and Its Potential as a Blood-based Biomarker for Alzheimer's Disease (말초 아밀로이드 베타 원천으로서의 혈소판과 알츠하이머병의 혈액 바이오마커로서의 가능성)

  • Kang, Jae Seon;Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1118-1127
    • /
    • 2020
  • Alzheimer's disease causes progressive neuronal loss that leads to cognitive disturbances. It is not currently curable, and there is no way to stop its progression. However, since medical treatment for Alzheimer's disease is most effective in the early stages, early detection can provide the best chance for symptom management. Biomarkers for the diagnosis of Alzheimer's disease include amyloid β (Aβ) deposition, pathologic tau, and neurodegeneration. Aβ deposition and phosphorylated tau can be detected by cerebrospinal fluid (CSF) analysis or positron emission tomography (PET). However, CSF sampling is quite invasive, and PET analysis needs specialized and expensive equipment. During the last decades, blood-based biomarker analysis has been studied to develop fast and minimally invasive biomarker analysis method. And one of the remarkable findings is the involvement of platelets as a primary source of Aβ in plasma. Aβ can be transported across the blood - brain barrier, creating an equilibrium of Aβ levels between the brain and blood under normal condition. Interestingly, a number of clinical studies have unequivocally demonstrated that plasma Aβ42/Aβ40 ratios are reduced in mild cognitive impairment and Alzheimer's disease. Together, these recent findings may lead to the development of a fast and minimally invasive early diagnostic approach to Alzheimer's disease. In this review, we summarize recent advances in the biomarkers of Alzheimer's disease, especially the involvement of platelets as a source of peripheral Aβ production and its potential as a blood-based biomarker.

HE4 as a Serum Biomarker for ROMA Prediction and Prognosis of Epithelial Ovarian Cancer

  • Chen, Wen-Ting;Gao, Xiang;Han, Xiao-Dian;Zheng, Hui;Guo, Lin;Lu, Ren-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.101-105
    • /
    • 2014
  • Background and Purpose: Human epididymis protein 4 (HE4) has been suggested to be a novel biomarker of epithelial ovarian cancer (EOC). The present study aimed to evaluate and compare HE4 with the commonly used marker, carbohydrate antigen 125 (CA125), in prediction and therapy-monitoring of EOC. Patients and Methods: Serum HE4 concentrations from 123 ovarian cancer patients and 174 controls were measured by Roche electrochemiluminescent immunoassay (ECLIA). Risk of ovarian malignancy algorithm (ROMA) values were calculated and assessed. In addition, the prospects of HE4 detection for therapy-monitoring were evaluated in EOC patients. Results: The ROMA score could classify patients into high- and low-risk groups with malignancy. Indeed, lower serum HE4 was significantly associated with successful surgical therapy. Specifically, 38 patients with EOC exhibited a greater decline of HE4 compared with CA125. In contrast, elevation of HE4 better predicted recurrence (of 46, 11 patients developed recurrence, and with it increased HE4 serum concentrations) and a poor prognosis than CA125. Conclusions: This study suggests that serum HE4 levels are closely associated with outcome of surgical therapy and disease prognosis in Chinese EOC patients.

Interferon Stimulated Gene - ISG15 is a Potential Diagnostic Biomarker in Oral Squamous Cell Carcinomas

  • Laljee, Rupesh Puthenparambil;Muddaiah, Sunil;Salagundi, Basavaraj;Cariappa, Ponappa Muckatira;Indra, Adarsh Surendran;Sanjay, Venkataram;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.1147-1150
    • /
    • 2013
  • Background: Cancer diagnostic biomarkers have a wide range of applications that include early detection of oral precancerous lesions and oral squamous cell carcinomas, and assessing the metastatic status of lesions. The interferon stimulated ISG15 gene encodes an ubiquitin-like protein, which conjugates to stabilize activation status of associated proteins. Hence a deregulated expression of ISG15 may promote carcinogenesis. Indeed overexpression of ISG15 has been observed in several cancers and hence it has been proposed as a strong candidate cancer diagnostic biomarker. Given the emerging relationship between malignant transformation and ISG15, we sought to examine the expression pattern of this gene in tumor biopsies of oral squamous cell carcinoma (OSCC) tissues collected from Indian patients. Materials and Methods: Total RNA isolated from thirty oral squamous cell carcinoma tissue biopsy samples were subjected to semi-quantitative RT-PCR with ISG15 specific primers to elucidate the expression level. Results: Of the thirty oral squamous cell carcinomas that were analyzed, ISG15 expression was found in twenty four samples (80%). Twelve samples expressed low level of ISG15, six of them expressed moderately, while the rest of them expressed very high level of ISG15. Conclusions: To the best of our knowledge, the results show for the first time an overexpression of ISG15 in up to 80% of oral squamous cell carcinoma tissues collected from Indian patients. Hence ISG15 may be explored for the possibility of use as a high confidence diagnostic biomarker in oral cancers.

Enzyme-linked Immunosorbent Assays (ELISA) and Immunochromatography Assays (ICG) for Analysis of Vitellogenin in the Scorpion Fish Sebastiscus marmoratus (쏨뱅이(Sebastiscus marmoratus)의 Vitellogenin 분석을 위한 효소면역측정법(ELISA) 및 면역크로마토그래피분석법(ICG) 개발)

  • Yeo, In-Kyu;Lim, Yoon-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.459-465
    • /
    • 2015
  • We tested biomarker systems [enzyme-linked immunosorbent assay (ELISA) and immunochromatography assay (ICG) kits] for the screening of endocrine-disrupting chemicals in contaminated environments using antibodies resulting from $17{\beta}$-Estradiol-induced vitellogenin (Vtg) in the wild scorpion fish Sebastiscus marmoratus. Monoclonal antibodies of two clones (S28 and S15) were used as capture and tracer antibodies for ELISA and ICG assays. ELISA detected Vtg at levels greater than $0.1{\mu}g/mL$, while ICG detected Vtg at levels greater than $1{\mu}g/mL$. However, the ICG system was able to detect antibodies from $17{\beta}$-Estradiol-induced Vtg serum that had been diluted 1,000 times. Our results suggest that previously developed biomarker assays can be used as detection systems to detect known endocrine-disrupting chemicals in contaminated environments, and to measure their activity.

BRCA1 Promoter Hypermethylation Signature for Early Detection of Breast Cancer in the Vietnamese Population

  • Truong, Phuong Kim;Lao, Thuan Duc;Doan, Thao Phuong Thi;Huyen, Thuy Ai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9607-9610
    • /
    • 2014
  • Breast cancer, a leading cause of death among women in most countries worldwide, is rapidly increasing in incidence in Vietnam. One of biomarkers is the disruption of the genetic material including epigenetic changes like DNA methylation. With the aim of finding hypermethylation at CpG islands of promoter of BRCA1 gene, belonged to the tumor suppressor gene family, as the biomarker for breast cancer in Vietnamese population, sensitive methyl specific PCR (MSP) was carried out on 115 samples including 95 breast cancer specimens and 20 normal breast tissues with other diseases which were obtained from Ho Chi Minh City Medical Hospital, Vietnam. The result indicated that the frequency of BRCA1 hypermethylation reached 82.1% in the cases (p<0.001). In addition, the DNA hypermethylation of this candidate gene increased the possibility to be breast cancer with high incidence via calculated odd ratios (p<0.05). In conclusion, hypermethylation of this candidate gene could be used as the promising biomarker application with Vietnamese breast cancer patients.

SELDI-TOF MS Combined with Magnetic Beads for Detecting Serum Protein Biomarkers and Establishment of a Boosting Decision Tree Model for Diagnosis of Pancreatic Cancer

  • Qian, Jing-Yi;Mou, Si-Hua;Liu, Chi-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1911-1915
    • /
    • 2012
  • Aim: New technologies for the early detection of pancreatic cancer (PC) are urgently needed. The aim of the present study was to screen for the potential protein biomarkers in serum using proteomic fingerprint technology. Methods: Magnetic beads combined with surface-enhanced laser desorption/ionization (SELDI) TOF MS were used to profile and compare the protein spectra of serum samples from 85 patients with pancreatic cancer, 50 patients with acute-on-chronic pancreatitis and 98 healthy blood donors. Proteomic patterns associated with pancreatic cancer were identified with Biomarker Patterns Software. Results: A total of 37 differential m/z peaks were identified that were related to PC (P < 0.01). A tree model of biomarkers was constructed with the software based on the three biomarkers (7762 Da, 8560 Da, 11654 Da), this showing excellent separation between pancreatic cancer and non-cancer., with a sensitivity of 93.3% and a specificity of 95.6%. Blind test data showed a sensitivity of 88% and a specificity of 91.4%. Conclusions: The results suggested that serum biomarkers for pancreatic cancer can be detected using SELDI-TOF-MS combined with magnetic beads. Application of combined biomarkers may provide a powerful and reliable diagnostic method for pancreatic cancer with a high sensitivity and specificity.

The Overview of the Importances of Tumor Suppressor p53 for Investigating Molecular Toxicological Mechanisms of Various Environmental Mutagens (다양한 환경변이원의 분자독성학적 메커니즘 연구에 있어서 항종양 인자 p53의 중요성 고찰)

  • Jung Hwa Jin;Ryu Jae-Chun;Seo Young Rok
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.321-326
    • /
    • 2004
  • The study of p53 tumor suppressor protein is one of most important subjects in an environmental toxicology as well as in cancer biology. Generally, p53 has been known to involve the cell cycle regulation and apoptosis by the activation of its target genes such as p21 and bax in a number of cellular stress responses. In addition, associations of p53 with cellular proteins presumably reflect the involvement of p53 in critical cellular processes such as DNA repair. The complex formation of p53 and exogenous proteins such as viral or cellular proteins has been shown in many cases to play important roles in carcinogenic processes against environmental mutagen. Recently, the disruption of p53 protein by oxidative stress has been also reported to have relevance to carcinogenesis. These findings suggested that the maintaining of stability and functional activity of p53 protein was also important aspect to play as a tumor suppressor protein. Therefore, the detection of functional status of p53 proteins might be an effective biomarker for the cancer and human diseases under the environmental toxicologic carcinogen.

Recent Developments in Metal Oxide Gas Sensors for Breath Analysis (산화물 반도체를 이용한 최신 호기센서 기술 동향)

  • Yoon, Ji-Wook;Lee, Jong-Heun
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.70-81
    • /
    • 2019
  • Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.