• 제목/요약/키워드: Biologically-inspired Robot

검색결과 17건 처리시간 0.025초

얀센 키네틱스를 기반으로 한 보행 로봇 개발 (Development of a Legged Walking Robot Based on Jansen Kinetics)

  • 김선욱;김연균;정하민;이세한;황승국;김동헌
    • 한국지능시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.509-515
    • /
    • 2010
  • 부산과 경남의 경우 해안가뿐 만 아니라 습지 지역과 지역을 통과하는 낙동강의 넓은 남해안 벨트 등 다양한 형태의 환경으로 둘러싸여있다. 이러한 다양한 형태의 부정형 지역에서 활동할 수 있는 로봇의 이동 플랫폼이 요구되고 있다. 하지만 이러한 지형에 바퀴가 달린 감시로봇을 사용한다면 모래나 습지표면에 바퀴가 빠져 움직일 수 없다. 또한, 관절 로봇은 속도가 느리고 몸체가 움직일 때마다 기울어져 넘어질 수 있다. 따라서 본 연구에서는 모래 위, 습지에서 효과적으로 보행할 수 있는 메커니즘을 개발하는 것이다. 개발한 생물체 로봇에 카메라, 적외선 센서 등을 장착하고, 이 센서들을 이용하여 소프트 컴퓨팅 알고리즘을 이용하여 주위 환경에 반응하도록 한다. 또한 블루투스 통신 모듈을 장착하여 외부와 통신하며 외부의 명령에 순응하는 행동을 할 수 있게 한다. 본 연구의 최종 목표는 습지, 모래, 물 위에서 가장 적합하게 작동할 수 있는 생물체를 로봇으로 구현하고, 게 로봇에 부착된 카메라 정보를 통해 필요부분을 감시할 수 있으며, 컴퓨터에 전송된 화면을 보고 사용자가 로봇을 제어 할 수 있는 지능형 로봇을 제작하는 것이다.

4절 링크 이론과 얀센 메커니즘을 기반으로 한 보행 로봇의 운동학 해석 (Kinematic Analysis of a Legged Walking Robot Based on Four-bar Linkage and Jansen Mechanism)

  • 김선욱;김동헌
    • 한국지능시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.159-164
    • /
    • 2011
  • 본 연구에서는 4절 링크 이론(four-bar linkage mechanism)과 얀센 메커니즘(Jansen mechanism)을 기반으로 다관절 보행 로봇(multi-legged walking robot)인 게(crab) 로봇을 제작하고, 게 로봇의 움직임에 대하여 기구학적인 해석을 제시한다. 제작된 게 로봇은 영상 획득을 위하여 카메라를 장착하였고, 장애물 회피를 위하여 3조의 초음파 센서를 가지고 있다. 또한 RF통신으로 외부에 영상 정보를 전달하며, Blue-tooth 통신 모듈을 장착하여 외부로부터 부여된 임무를 수행할 수 있다. 게 로봇의 설계와 제작을 하기 위해서 필요로 하는, 로봇 다리의 움직임을 알기 위해서는 관절 변수와 다리 끝단의 위치 및 자세와의 관계를 얻어야 한다. 따라서, 제안된 기구학적 해석은 로봇의 설계와 제작에 있어서 많은 도움을 주며 중요한 과정이다.

A biologically inspired model based on a multi-scale spatial representation for goal-directed navigation

  • Li, Weilong;Wu, Dewei;Du, Jia;Zhou, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1477-1491
    • /
    • 2017
  • Inspired by the multi-scale nature of hippocampal place cells, a biologically inspired model based on a multi-scale spatial representation for goal-directed navigation is proposed in order to achieve robotic spatial cognition and autonomous navigation. First, a map of the place cells is constructed in different scales, which is used for encoding the spatial environment. Then, the firing rate of the place cells in each layer is calculated by the Gaussian function as the input of the Q-learning process. The robot decides on its next direction for movement through several candidate actions according to the rules of action selection. After several training trials, the robot can accumulate experiential knowledge and thus learn an appropriate navigation policy to find its goal. The results in simulation show that, in contrast to the other two methods(G-Q, S-Q), the multi-scale model presented in this paper is not only in line with the multi-scale nature of place cells, but also has a faster learning potential to find the optimized path to the goal. Additionally, this method also has a good ability to complete the goal-directed navigation task in large space and in the environments with obstacles.

소형 정찰 로봇의 도약 메커니즘 개발 (Development of Jumping Mechanism for Small Reconnaissance Robot)

  • 태원석;김수현;곽윤근
    • 한국군사과학기술학회지
    • /
    • 제12권5호
    • /
    • pp.563-570
    • /
    • 2009
  • In the future, most military activities will be replaced by robots. Because of many dangerous factors in battlefield, reconnaissance should be performed by robot. Reconnaissance robot should be small for not being detected, be light and simple structure for personal portability and overcome unexpected rough terrain for mission completion. In case of small and light robot, it can't get enough friction force for movement. Therefore small reconnaissance robot need jumping function for movement. In this paper we proposed a biologically inspired jumping mechanism. And we adjusted moment and jumping angle by using four bar linkage, especially varying coupler length.

사족보행 로봇의 개발을 위한 생체모방적 접근 (Biologically Inspired Approach for the Development of Quadruped Walking Robot)

  • 강태훈;송현섭;최혁렬
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.307-314
    • /
    • 2006
  • In this paper, we present a comprehensive study for the development of quadruped walking robot. To understand the walking posture of a tetrapod animal, we begin with a careful observation on the skeletal system of tertapod animals. From taking a side view of their skeletal system, it is noted that their fore limbs and hind limbs perform characteristic roles during walking. Moreover, the widths of footprints and energy efficiency in walking have a close relationship through taking a front view of their walking posture. According to these observations, we present a control method where the kinematical solutions are not necessary because we develop a new rhythmic gait pattern for the quadruped walking robot. Though the proposed control method and rhythmic pattern are simple, they can provide the suitable motion planning for the robot since the resultant movement is based on the animal's movements. The validity of the proposed idea is demonstrated through dynamic simulations.

작은 스케일의 생체 모방 수상 점프 로봇 (a biologically inspired small-scale water jumping robot)

  • 신봉수;김호영;조규진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1427-1432
    • /
    • 2008
  • This paper describes the locomotion of a water jumping robot which attempts to emulate the fishing spider’s ability to jump on the water surface. While previous studies of the robots mimicking arthropods living on water were focused on recreating their horizontal skating motions, here we aim to achieve a vertical jumping motion. The robot jumps by pushing the water surface with rapidly released legs which were initially bent. The motion is triggered with a latch driven by the shape memory alloy actuator. The robot is capable of jumping to the maximum height of 26mm. Jumping efficiency, defined the maximum jumping height on water over the maximum jumping height on rigid ground, is 0.26 This work represents a first step toward robots that can locomote on water with superior versatility including skating and jumping.

  • PDF

An Evolutionary Optimization Approach for Optimal Hopping of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2420-2426
    • /
    • 2015
  • This paper proposes an evolutionary optimization approach for optimal hopping of humanoid robots. In the proposed approach, the hopping trajectory is generated by a central pattern generator (CPG). The CPG is one of the biologically inspired approaches, and it generates rhythmic signals by using neural oscillators. During the hopping motion, the disturbance caused by the ground reaction forces is compensated for by utilizing the sensory feedback in the CPG. Posture control is essential for a stable hopping motion. A posture controller is utilized to maintain the balance of the humanoid robot while hopping. In addition, a compliance controller using a virtual spring-damper model is applied for stable landing. For optimal hopping, the optimization of the hopping motion is formulated as a minimization problem with equality constraints. To solve this problem, two-phase evolutionary programming is employed. The proposed approach is verified through computer simulations using a simulated model of the small-sized humanoid robot platform DARwIn-OP.