• Title/Summary/Keyword: Biological synthesis

Search Result 1,257, Processing Time 0.035 seconds

Effect of Unripe Apple Peel Water Extracts on Tyrosinase Activity and Melanin Production in B16F10 Melanoma Cells (B16F10 melanoma 세포에서 미성숙 사과 과피 열수추출물의 tyrosinase 활성과 melanin 생 성에 미치는 영향)

  • Jang, Young-Ah;Lee, Jin-Tae
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.900-907
    • /
    • 2018
  • This study was carried out to evaluate the possibility of unripe apple peel water extracts as cosmetic materials and to evaluate the biological activities of the antioxidant and whitening effects of the samples. The antioxidative properties of the samples were confirmed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) cation radical scavenging ability. To evaluate the whitening effect of the samples, several analytical techniques were used, including toxicity evaluations of the samples by MTT assays. Measurements of the inhibition rates of cellular tyrosinase, melanin synthesis rates, and expression rates of whitening-related proteins and genes were confirmed using melanoma (B16F10 cell). At equivalent unripe apple peel water concentrations ($1,000{\mu}g/ml$), the DPPH radical scavenging and the ABTS cation radical scavenging activities were 77.3% and 93.1%, respectively. The whitening activity evaluation showed that tyrosinase activity and melanin synthesis were inhibited by 19.8% and 17.3%, respectively, at unripe apple peel water extract concentrations of $50{\mu}g/ml$. In B16F10 cells induced by ${\alpha}$-MSH, the expression of tyrosinase, TRP-1, and TRP-2 decreased. Also, the activity of the transcription factor MITF was inhibited. In real-time PCR experiments, the expression of related genes at the upstream signal level was also found to be progressively lowered as the concentration of unripe apple peel water extracts increased. From these results, it was confirmed that the unripe apple peel water extracts showed excellent whitening efficacy and could be used as safe, natural, raw cosmetic material in the future.

Synthesis and Thermal Properties of PPS/PPSS Copolymer (PPS/PPSS 공중합체의 합성 및 열적 성질)

  • Park, Lee-Soon;Lee, Tae-Hyung;Kwak, Kyu-Dae;Haw, Jung-Rim
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.440-444
    • /
    • 1998
  • Poly(phenylene sulfide-co-phenylene sulfide sulfone), PPS/PPSS copolymers were synthesized from p-dichlobenzene(DCB), p-dibromobenzene(DBB), p-diiodobenzene(DIB), 4-chlorophenyl sulfone(CPS) and sodium sulfide as comonomers under high temperature and pressure utilizing N-methyl-2-pyrrolidinone(NMP) as solvent. The yield of PPS/PPSS copolymer shoed maximum at $190^{\circ}C$ with [DBB]/[CPS] and [DIB]/[CPS] comonomer pair, while [DCB]/[CPS] pair exhibited maximum yield at $230^{\circ}C$. The change of yield is in the order of I>Br>Cl as leaving groups were in accordance with nucleophilic aromatic substitution reaction mechanism suggested for the synthesis of PPS type polymers. The molecular weight of PPS/PPSS copolymer was the highest($M_w=8,330g/mol$) with [DBB]/[CPS] comonomers in which [CPS] was 10 mole%. The PPS/PPSS copolymer made with 10 mole% of [CPS] showed about $15^{\circ}C$ higher $T_g$ and $15^{\circ}C$ lower $T_m$ than those of PPS homopolymer, which may be useful from the processing and thermal property point of view. The PPS/PPSS copolymer with 30 mole% of CPS or above did not exhibit Tm. The PPS/PPSS copolymer obtained with comonomer feed ratio of [DBB]/[CPS] = 95/5 mole% under $240^{\circ}C$ showed even higher molecular weight($M_w=10,300g/mole$) than PPS homopolymer made under similar reaction condition, retaining high crystallinity and thermal stability.

  • PDF

Screening Test(I) of Several Antipsychotic Agents on NO Formation (수종 정신병치료제들의 NO형성에 대한 검색(I))

  • Lee, Jong-Hwa;EI-fakahany, Esam E.
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.343-349
    • /
    • 1994
  • A number of neurological syndromes(e.g. tardive dyskinesia) are developed as a consequence of chronic treatment with neuroleptics or antipsychotic agents. Despite the long and succesful use of phenothiazine derivatives and related agents in the treatment of certain states of mental disease, the mechanisms of these drugs are still poorly understood. One current hypothesis from extensive reviews is that these compounds might significantly interfere with the cyclic nucleotide system in brain (Levin and Weiss, 1977; Nowicki et al., 1991; Haley et al., 1992). Nitric oxide (NO), one of an interesting messenger molecule and aberrant transmitter, is believed to play a important role in biological functions of cyclic nucleotides in nervous system. It has been reported that calcium-dependent NO synthesis in endothelial cytosol is mediated by calmodulin which is supposed to be tightly related to pharmacological actions of antipsychotic agents. In the present study, the effect of several antipsychotic agents on the activity of NO synthesis and formation of cyclic GMP were investigated. These agents inhibited both the formation of $[^3H]L-citrulline$ and that of $[^3H]cyclic$ GMP by concentration-dependent manner, and their inhibiting patterns are so similar to that of calmodulin antagonist.

  • PDF

Studies on Antioxidant Activity and Inhibition of Nitric Oxide Synthesis of Germinated Brown Rice Soaked in Mycelial Culture Broth of Phellinus linteus (상황버섯균사체배양액에 침지한 발아현미의 항산화 및 nitric oxide 합성저해에 관한 연구)

  • Jung, Il-Sun;Kim, Yu-Jung;Choi, In-Soon;Choi, Eun-Young;Shin, Su-Hwa;Gal, Sang-Wan;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1141-1146
    • /
    • 2007
  • This study investigated the effects on the biological activities of germinated brown rice soaked in mycelial culture broth of Phellinus linteus. The level of free amino acid was higher in the GBRP extract than those of BR and GBR. The major free amino acids were alanine, valine, isoleucine and methionine in both extracts. The level of ${\gamma}$-aminobutyric acid (GABA) was also increased significantly in the GBR and GBRP. Antioxidant activities of methanol extract of BR, GBR and GBRP were measured by using DPPH radical scavenging and SOD-like activity. Antioxidant activities showed the highest level of 83% and 76% when 100 mg/ml GBR and GBRP, respectively. Stimulation of the macrophages RAW264.7 cells with lipopolysaccharide (LPS) resulted in increased production of nitric oxide (NO) in the medium. However, the methanol extract of GBR and GBRP showed marked inhibition of NO synthesis in a does-dependant manner. These results showed that GBR and GBRP were significant role for activation of immune system in the pathogenesis of inflammatory diseases.

Rare ginsenoside Ia synthesized from F1 by cloning and overexpression of the UDP-glycosyltransferase gene from Bacillus subtilis: synthesis, characterization, and in vitro melanogenesis inhibition activity in BL6B16 cells

  • Wang, Dan-Dan;Jin, Yan;Wang, Chao;Kim, Yeon-Ju;Perez, Zuly Elizabeth Jimenez;Baek, Nam In;Mathiyalagan, Ramya;Markus, Josua;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.42-49
    • /
    • 2018
  • Background: Ginsenoside F1 has been described to possess skin-whitening effects on humans. We aimed to synthesize a new ginsenoside derivative from F1 and investigate its cytotoxicity and melanogenesis inhibitory activity in B16BL6 cells using recombinant glycosyltransferase enzyme. Glycosylation has the advantage of synthesizing rare chemical compounds from common compounds with great ease. Methods: UDP-glycosyltransferase (BSGT1) gene from Bacillus subtilis was selected for cloning. The recombinant glycosyltransferase enzyme was purified, characterized, and utilized to enzymatically transform F1 into its derivative. The new product was characterized by NMR techniques and evaluated by MTT, melanin count, and tyrosinase inhibition assay. Results: The new derivative was identified as (20S)-$3{\beta},6{\alpha},12{\beta}$,20-tetrahydroxydammar-24-ene-20-O-${\beta}$-D-glucopyranosyl-3-O-${\beta}$-D-glucopyranoside(ginsenoside Ia), which possesses an additional glucose linked into the C-3 position of substrate F1. Ia had been previously reported; however, no in vitro biological activity was further examined. This study focused on the mass production of arduous ginsenoside Ia from accessible F1 and its inhibitory effect of melanogenesis in B16BL6 cells. Ia showed greater inhibition of melanin and tyrosinase at $100{\mu}mol/L$ than F1 and arbutin. These results suggested that Ia decreased cellular melanin synthesis in B16BL6 cells through downregulation of tyrosinase activity. Conclusion: To our knowledge, this is the first study to report on the mass production of rare ginsenoside Ia from F1 using recombinant UDP-glycosyltransferase isolated from B. subtillis and its superior melanogenesis inhibitory activity in B16BL6 cells as compared to its precursor. In brief, ginsenoside Ia can be applied for further study in cosmetics.

Synthesis of O-(3-[18F]Fluoropropyl)-L-tyrosine (L-[18F]FPT) and Its Biological Evaluation in 9L Tumor Bearing Rat

  • Moon, Byung-Seok;Kim, Sang-Wook;Lee, Tae-Sup;Ahn, Soon-Hyuk;Lee, Kyo-Chul;An, Gwang-Il;Yang, Seung-Dae;Chi, Dae-Yoon;Choi, Chang-Woon;Lim, Sang-Moo;Chun, Kwon-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.91-96
    • /
    • 2005
  • O-(3-[$^{18}$F]Fluoropropyl)-L-tyrosine (L-[$^{18}$F]FPT) was synthesized by nucleophilic radiofluorination followed by acidic hydrolysis of protective groups and evaluated with 9 L tumor bearing rat. L-[$^{18}$F]FPT is an homologue of O-(2-[$^{18}$F]fluoroethyl)-L-tyrosine (L-[$^{18}$F]FET) which recently is studied as a tracer for tumor imaging using positron emission tomography (PET). [$^{18}$F]FPT was directly prepared from the precursor of O-(3-ptoluenesulfonyloxypropyl)- N-(tert-butoxycarbonyl)-L-tyrosine methyl ester. FPT-PET image was obtained at 60 min in 9 L tumor bearing rats. The radiochemical yield of [$^{18}$F]FPT was 0-45% (decay corrected) and the radiochemical purity was more than 95% after HPLC purification. The total time elapsed for the synthesis of [$^{18}$F]FPT was 100 min from EOB (End-of-bombardment). A comparison of uptake studies between [$^{18}$F]FPT and [$^{18}$F]FET was performed. In biodistribution, [$^{18}$F]FPT showed similar pattern with [$^{18}$F]FET in various tissues, but [$^{18}$F]FPT showed low uptake in brain. Furthermore, [$^{18}$F]FPT showed higher tumor-to-brain ratio than [$^{18}$F]FET. In conclusion, [$^{18}$F]FPT seems to be more useful amino acid tracer than [$^{18}$F]FET for brain tumors imaging with PET.

Chitosan-alginate Gel Modified Poly (L-Lactic-co-ε-Caprolactone) (PLCL) as a Scaffold for Cartilage Tissue Engineering (변형된 키토산 알지네이트 겔 poly (L-Lactic-co-ε-Caprolactone) 지지체의 연골 조직 재생 평가)

  • Sutradhar, Bibek Chandra;Hwang, Yawon;Choi, Seokhwa;Kim, Gonhyung
    • Journal of Veterinary Clinics
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2015
  • This study was designed in the fabricated poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold using chitosan-alginate hydrogel, which would be more suitable to maintain the biological and physiological functions continuing three dimensional spatial organizations for chondrocytes. As a scaffold, hydrogels alone is weak at endure complex loading within the body. In this study, we made cell hybrid scaffold constructs with poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold and hydrogels to make a three-dimensional composition of cells and extracellular matrix, which would be a mimic of a native cartilage. Using a particle leaching technique with NaCl, we fabricated a highly-elastic scaffold from PLCL with 85% porosity and $300-500{\mu}m$ pore size. A mixture of bovine chondrocytes and chitosan-alginate gel was seeded and compared with alginate as a control on the PLCL scaffold. The cell maturation, proliferation, extracellular matrix synthesis, glycosaminoglycans (sGAG) production and collagen type-II expressions were better in chondrocytes seeded in chitosan-alginate hydrogel than in alginate only. These results indicate that chondrocytes with chitosan-alginate gel on PLCL scaffolds provide an appropriate biomimetic environment for cell proliferation and matrix synthesis, which could successfully be used for cartilage repair and regeneration.

Synthesis of N-acyl-α-aminosuccinimides and N-acyl-α-aminoglutarimides (N-아실-α-아미노숙신이미드와 N-아실-α-아미노글루탈이미드의 합성)

  • 정대일;김문주;송현애;김윤영;이용균;박유미;최순규;한정태;박민수
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.91-97
    • /
    • 2004
  • As a part of our study on the improvement of anticonvulsant, here we report the synthesis of N-acyl-$\alpha$-aminosuc-cinimides 1 and N-acyl-$\alpha$-aminoglutarimides 2. (R)-Benzoic acid 4-benzyloxycarbonylamino-2-oxo-pyrrolidin-1-ylester 6a, (R)-4-nifro-benzoic acid 4-benzyloxycarbonylamino-2- oxo-pyrrolidin-1-yl ester 6b, (R) -4-nitro-benzoic acid 4-benzyloxycarbonylamino-2-oxo-pyrrolidin-1-yl ester 6c, and (R)-propionic acid 4-benzyloxycarbonylamino-2-oxo-pyrrolidin-1-yl ester 6d were synthesized from (R)-2-benzyloxy carbonylamino-succinic acid 3 as a starting meterial. (R)-(3- Benzyloxycarbonylamino-2,6-dioxo-piperidin-1-yloxy)-acetic acid methyl ester 10a, (R)-(3-benzyloxycarbonylamino-2,6-dioxo-piperidin-1-yloxy)-acetic acid ethy1 ester 10b, an d (R)-2-(3-benzyloxycarbonylamino-2,6- diox o-piperidin-1-yl oxy)-propionic acid methyl ester l0c were synthesized from (R)- 3-carbobenzyloxy-amino-glutarmic acid 7 as a starting meterial. The yield, mp, IR, $^1H-NMR,\; and^{13}C$- NMR spectra of the products 6a, 6b, 6c, 6d, 10a, l0b, l0c are summarized in footnote. The biological studies of these compounds are in progress and will be reported in future.

Studies on Antioxidant Activity and Inhibition of Nitric Oxide Synthesis from Codium fragile (청각추출물의 항산화 및 일산화질소 합성 저해 연구)

  • Kim, Yu-Jung;Jung, Il-Sun;Choi, In-Soon;Gal, Sang-Wan;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.788-793
    • /
    • 2006
  • This study was carried out to investigate the biological effects from Codium fragile. Methanol extract of Codium fragile increased two times at 2500 ㎍/ml the growth of Lactobacillus plantarum that associated with probiotic properties of lactic acid bacteria of Kimchi. Ethyl acetate extract of Codium fragile inhibited the cellulase activity up to approximately 60% at $2500\;{\mu}g/ml$. Methanol extract of Codium fragile was fractionated into several subfractions and their antioxidant activities were measured by using DPPH radical scavenging and SOD-like activity. Especially the antioxidative activity of ethyl acetate fraction was shown higher than that of other fractions and its fraction showed higher contents of total phenolic compounds, indicating the positive relationship between DPPH radical scavenging effect and total polyphenol content. Stimulation of the macrophages RAW264.7 cells with lipopolysaccharide (LPS) resulted in increased production of nitric oxide (NO) in the medium. However, the methanol extract of Codium fragile showed marked inhibition of NO synthesis in a dose-dependent manner. This result suggest that Codium fragile plays significant role for activation of immune system in the pathogenesis of inflammatory diseases.

Comparative Study of the Biological Activity of Propolis Extracts with Various Countries of Origin as Cosmetic Materials (원산지별 프로폴리스 추출물의 화장품 소재로서의 생리활성 비교연구)

  • Jung, Eunsun;Weon, Jin Bae;Ji, Hyanggi;You, Jiyoung;Oh, Se-young;Kim, Hayeon;Xin, Yingji;Kim, Eun Bin;Heo, Kang-Hyuck;Park, Deokhoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • Propolis is a sticky resinous substance that is formed by the combination of honeybee secretions and resin of plants, which serves to protect from bacteria and viruses. This study aims to evaluate the efficacy of propolis extract from Korea (KPE), China (CPE), and Brazil (BPE) through antioxidant, antibacterial, whitening, and anti-inflammatory tests, and to examine their potential as cosmetic materials. KPE, CPE, and BPE showed significant antioxidant activities on flavonoid/polyphenol content and free radical scavenging activity. The antibacterial effect of propolis on skin flora was determined by measuring the minimal inhibitory concentration (MIC). KPE showed better antibacterial efficacy than CPE and BPE in C. acnes (KPE, CPE, and BPE: (62.5, 250, and 500) ㎍/mL, respectively). Furthermore, KPE inhibited the melanin synthesis in human epidermal melanocytes and production of nitric oxide and PGE2 induced by lipopolysaccharide (LPS) in mouse macrophages, which showed better than did CPE or BPE. Taken together, the propolis extracts can be applied to antioxidant, antibacterial, and anti-inflammatory ingredient for cosmetics, while KPE showed superior potential in antibacterial, anti-inflammatory, and whitening efficacies.