• 제목/요약/키워드: Biological signal

검색결과 1,271건 처리시간 0.019초

Differential Coupling of G$\alpha$q Family of G-protein to Muscarinic $M_1$ Receptor and Neurokinin-2-Receptor

  • Lee, Chang-Ho;Shin, In-Chul;Kang, Ju-Seop;Koh, Hyun-Chul;Ha, Ji-Hee;Min, Chul-Ki
    • Archives of Pharmacal Research
    • /
    • 제21권4호
    • /
    • pp.423-428
    • /
    • 1998
  • The ligand binding signals to a wide variety of seven transmembrane cell surface receptors are transduced into intracellular signals through heterotrimeric G-proteins. Recently, there have been reports which show diverse coupling patterns of ligand-activated receptors to the members of Gq family $\alpha$ subunits. In order to shed some light on these complex signal processing networks, interactions between G$\alpha$q family of G protein and neurokinin-2 receptor as well as muscarinic M$_{1}$ receptor, which are considered to be new thearpeutic targets in asthma, were studied. Using washed membranes from Cos-7 cells co-transfected with different G.alpha.q and receptor cDNAs, the receptors were stimulated with various concentrations of carbachol and neurokinin A and the agonist-dependent release of [$^3H$]inositol phosphates through phospholipase C beta-1 activation was measured. Differential coupling of Gaq family of G-protein to muscarinic M$_{1}$ receptor and neurokinin-2 receptor was observed. The neurokinin-2 receptor shows a ligand-mediated response in membranes co-transfected with G$\alpha$q, G$\alpha$11 and G$\alpha$14 but not G$\alpha$16 and the ability of the muscarinic $M_1$ receptor to activate phospholipase C through G$\alpha$/11 but not G$\alpha$14 and G$\alpha$16 was demonstrated. Clearly G$\alpha$/11 can couple $\M_1$ and neurokinin-2 receptor to activate phospholipase C. But, there are differences in the relative coupling of the G$\alpha$14 and G$\alpha$16 subunits to these receptors.

  • PDF

곤충세포 배지로부터 히스티딘이 융합된 Autotaxin(NPP-2)의 발현, 분비 및 정제 (Expression, Secretion and Purification of Histidine-Tagged Autotaxin (NPP2) from Insect Cells Media)

  • 이종한;송재휘;이종흔;안영민;김수영;이석형;박원상;유남진;홍성렬
    • 약학회지
    • /
    • 제47권6호
    • /
    • pp.410-416
    • /
    • 2003
  • Autotaxin(ATX) was originally purified from conditioned media of A2058 human melanoma cells and shown to be a potent cell motility-stimulating factor, possessing a type II nucleotide pyrophosphatase/phosphodiesterase (NPP2) activity. Recombinant ATX has recently demonstrated that human plasma lysophosholipase D is identical to ATX and uses lysophosphatidylcholine as a substrate to mediate various biological functions including tumor cell growth and motility through G-protein coupled receptor. However, despite pivotal roles of ATX on physiological or pathophysiological states, the production of ATX is solely depends on complicated purification method which employs multiple column steps, but resulted in very poor yield. This limited the use of ATX for extensive analysis. We, therefore, expressed six histidine-tagged recombinant human ATX(His-ATX) in High Five TM insect cells to improve the generation of ATX and to make simple the purification of ATX. The signal sequence of the human ATX gene was truncated and replaced with sequence of insect cell secretion signal within expression vector. In addition, codons for six histidines were added to the C-termini of 120kDa ATX cDNA construct. A simple purification scheme utilizing two-step affinity column chromatography was designed to purify His-ATX to homogeneity from the culture supernatant of transfected insect cells. Homogenous His-ATX was detected and isolated from the concentrated insect cell medium using concanavalin A agarose and nickel affinity chromatography. Purified His-ATX was in full length with ATX capacity. A combination of this expression system and purification scheme would be useful for production and purification of high-quality functional ATX for research and practical application of multiple functional motogen, ATX/NPP-2.

Nerve Growth Factor Activates Brain-derived Neurotrophic Factor Promoter IV via Extracellular Signal-regulated Protein Kinase 1/2 in PC12 Cells

  • Park, So Yun;Lee, Ji Yun;Choi, Jun Young;Park, Mae Ja;Kim, Dong Sun
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.237-243
    • /
    • 2006
  • Brain-derived neurotrophic factor (BDNF) is a neuromodulator of nociceptive responses in the dorsal root ganglia (DRG) and spinal cord. BDNF synthesis increases in response to nerve growth factor (NGF) in trkA-expressing small and medium-sized DRG neurons after inflammation. Previously we demonstrated differential activation of multiple BDNF promoters in the DRG following peripheral nerve injury and inflammation. Using reporter constructs containing individual promoter regions, we investigated the effect of NGF on the multiple BDNF promoters, and the signaling pathway by which NGF activates these promoters in PC12 cells. Although all the promoters were activated 2.4-7.1-fold by NGF treatment, promoter IV gave the greatest induction. The p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, phosphatidylinositol 3-kinase (PI-3K) inhibitor, LY294003, protein kinase A (PKA) inhibitor, H89, and protein kinase C (PKC) inhibitor, chelerythrine, had no effect on activation of promoter IV by NGF. However, activation was completely abolished by the MAPK kinase (MEK) inhibitors, U0126 and PD98059. In addition, these inhibitors blocked NGF-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) 1/2. Taken together, these results suggest that the ERK1/2 pathway activates BDNF promoter IV in response to NGF independently of NGF-activated signaling pathways involving PKA and PKC.

TNF-α-Induced SOX5 Upregulation Is Involved in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Through KLF4 Signal Pathway

  • Xu, Lijun;Zheng, Lili;Wang, Zhifang;Li, Chong;Li, Shan;Xia, Xuedi;Zhang, Pengyan;Li, Li;Zhang, Lixia
    • Molecules and Cells
    • /
    • 제41권6호
    • /
    • pp.575-581
    • /
    • 2018
  • Postmenopausal osteoporosis (PMOP) is a common systemic skeletal disease characterized by reduced bone mass and microarchitecture deterioration. Although differentially expressed SOX5 has been found in bone marrow from ovariectomized mice, its role in osteogenic differentiation in human mesenchymal stem cells (hMSCs) from bone marrow in PMOP remains unknown. In this study, we investigated the biological function of SOX5 and explore its molecular mechanism in hMSCs from patients with PMOP. Our findings showed that the mRNA and protein expression levels of SOX5 were upregulated in hMSCs isolated from bone marrow samples of PMOP patients. We also found that SOX5 overexpression decreased the alkaline phosphatase (ALP) activity and the gene expression of osteoblast markers including Collagen I, Runx2 and Osterix, which were increased by SOX5 knockdown using RNA interference. Furthermore, $TNF-{\alpha}$ notably upregulated the SOX5 mRNA expression level, and SOX5 knockdown reversed the effect of $TNF-{\alpha}$ on osteogenic differentiation of hMSCs. In addition, SOX5 overexpression increased Kruppel-like factor 4 (KLF4) gene expression, which was decreased by SOX5 silencing. KLF4 knockdown abrogated the suppressive effect of SOX5 overexpression on osteogenic differentiation of hMSCs. Taken together, our results indicated that $TNF-{\alpha}$-induced SOX5 upregulation inhibited osteogenic differentiation of hMSCs through KLF4 signal pathway, suggesting that SOX5 might be a novel therapeutic target for PMOP treatment.

휴대용 뇨당 측정 시스템의 개발 (Development of an Portable Urine Glucose Monitoring System)

  • 박호동;이경중;윤형로
    • 대한의용생체공학회:의공학회지
    • /
    • 제23권5호
    • /
    • pp.397-403
    • /
    • 2002
  • 뇨당 측정 시스템은 소변 속의 글루코오스 농도를 측정함으로서 당뇨 수치를 모니터링하는 비침습적인 당뇨병 자가 진단 장치이다. 본 논문에서는 기존의 침습형 혈당측정방법의 불편성과 비색계를 이용한 뇨당 검사법의 단점을 보완한 뇨당 측정시스템을 설계하였다. 뇨당 측정시스템은 뇨당 측정용 화학센서, 신호검출부, 디지털 제어 및 신호분석부, 디스플레이부 및 전원부로 구성된다. 뇨당측정용 센서로는 재현성이 뛰어나고 다루기가 간편하며 저렴한 가격으로 대량 생산할 수, 있는 일회용 뇨당측정용 전류화학센서를 개발하였다. 설계한 뇨당 측정시스템의 성능을 평가하기 위하여 사람의 소변에 임의의 농도의 글루코오스 성분을 섞은 용액에 대하여 글루코오스 성분 분석시 사용되는 표준장비와의 비교분석을 통해서 글루코오스 농도 검출에 대한 신뢰성 평가를 수행하였다. 회귀분석에 기초한 신뢰성 평가를 수행한 결과 표준오차는 2.85282로 나타났다. 또한, 화학센서를 사용해서 측정하는 시스템을 평가 시 중요한 파라미터인 S.D(Standard Deviation)는 10%로서 임상적으로 유효한 15% 범주 내에 있음을 확인하였고, C.V(Coefficient of Validation)값은 ,5%이내이므로 혈당센서의 기준으로 평가해 볼때 만족하는 결과를 보였다.

가압식 오실로메트릭 방법을 사용한 혈압측정 시스템의 설계 (Design of the Blood Pressure Measurement System Using the Inflatable Oscillometric Method)

  • 노동곤;이윤선;지정호;박성빈;이계형;김해관
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권4호
    • /
    • pp.281-286
    • /
    • 2003
  • 혈압은 사람의 건강상태를 알 수 있는 가장 기본적인 의학적 파라메터 중 하나이며, 오실로메트릭 방법을 사용한 혈압측정 시스템은 팔 동맥에서 커프를 통해 나타나는 압력을 측정함으로써 혈압수치를 비침습적으로 모니터링 하는 장치이다. 된 논문에서는 커프에 공기를 주입하면서 혈압을 측정하는 가압식 손목형 혈압측정 시스템을 설계하였다 설계한 혈압측정 시스템은 전원부와 압력을 가하는 공기주머니를 포함하는 커프, 신호검출부, 신호처리부, 무선 송수신부 그리고 디스플레이부로 구성된다. 설계한 자동 혈압측정 시스템은 기존에 일반적으로 사용되고 있는 자동혈압측정 시스템과의 수축기, 이완기 혈압 및 심박동수의 비교분석을 통해 신뢰성을 평가하였다. 수축기 혈압과 이완기 혈압을 결정하기 위해 MAA (Maximum Amplitude Algorithm)를 사용하였고, 적용한 특성비율은 0.436. 0.671이 었다.

피부에 의한 이득 감쇠를 줄이기 위한 FEA 시뮬레이션 기반의 이식형 마이크로폰 설계 및 구현 (Design and Fabrication of an Implantable Microphone for Reduction of Skin Damping Effect through FEA Simulation)

  • 한지훈;김민우;김동욱;성기웅;조성목;박일용;조진호
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권1호
    • /
    • pp.59-65
    • /
    • 2008
  • Nowadays, implantable hearing aids have been developed to solve the problems of conventional hearing aids. In case of fully implantable hearing aids, an implantable microphone is necessary to receive sound signal beneath the skin. Normally, an implantable microphone has poor frequency response characteristics in high frequency bands of acoustic signal due to the high frequency attenuation effect of skin after implantation to human body. In this paper, the implantable microphone is designed to reduce the high frequency attenuation effect of a skin by putting its resonance frequency at the attenuated range through a finite element analysis (FEA) simulation. The designed implantable microphone through the simulated results has been fabricated by manufacturing process using bio-compatible materials. By the several in-vitro experiments with pig skin, it has been verified that the designed implantable microphone has a resonance frequency around the starting part of the attenuated range and reduces the attenuation effect.

다목적 안과용 레이저 시스템 안전성 성능평가 및 임상적 유효성평가 가이드라인 수립을 위한 연구 (A Study on Safety, Performance and Clinical effectiveness Test Guideline of Versatile Ophthalmic Laser System)

  • 김유림;유우진;박호준;장원석
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권6호
    • /
    • pp.250-259
    • /
    • 2019
  • Ophthalmic Laser System is widely used in Selective Laser Trabeculoplasty of Open Angle Glaucoma and Ocular Hypertension. Versatile ophthalmic laser system is a medical device with technology that checks the condition of the treatment area by irradiating a continuous laser pulse on the treatment area, and monitoring the microbubble reaction caused by the temperature increase of the melanosome through the ultrasonic signal and the optical signal sensor. It performs selective laser treatment without damaging the photoreceptor by controlling the wavelength of the laser when microbubbles are detected. This study aims to suggest a guideline for evaluating safety, performance and clinical effectiveness of Versatile Ophthalmic Laser System in accordance with the growing technology. International Standards, Regulations, and Clinical Trial Protocols were investigated and analyzed for this study. As a result of this study, the safety, performance and clinical effectiveness test guideline for Versatile Ophthalmic Laser System were proposed. This guideline will ensure the safety and efficacy of Medical device, and furthermore it is expected to be able to promote the development of technology development by supporting a clinical trial plan.

최적화된 샘플링 인수를 갖는 단일 채널 RF 샘플링 방식의 다중점 펄스 도플러 시스템을 사용한 혈류 속도분포 측정 (Volumetric Blood Velocity Measurement on Multigate Pulsed Doppler System based on the Single Channel RF Sampling using the Optimized Sampling Factor)

  • 임춘성;민경선
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권2호
    • /
    • pp.143-152
    • /
    • 1998
  • In this paper, we present the performances of a Doppler system using single channel RF(Radio Frequency) sampling. This technique consists of undersampling the ultrasonic blood backscattered RF signal on a single channel. Conventional undersampling method in Doppler imaging system have to use a minimum of two identical parallel demodulation channels to reconstruct the multigate analytic Doppler signal. However, this system suffers from hardware complexity and problem of unbalance(gain and phase) between the channels. In order to reduce these problems, we have realized a multigate pulsed Doppler system using undersampling on a single channel, It requires sampling frequency at $4f_o$(where $f_o$ is the center frequency of the transducer) and 12bits A/D converter. The proposed " single-Channel RF Sampling" method aims to decrease the required sampling frequency proportionally to $4f_o$/(2k+1). To show the influence of the factor k on the measurements, we have compared the velocity profiles obtained in vitro and in vivo for different intersequence delays time (k=0 to 10). We have used a 4MHz center frequency transducer and a Phantom Doppler system with a laminar stationary flow. The axial and volumetric velocity profiles in the vessel have been computed according to factor k and have been compared. The influence of the angle between the ultrasonic beam and the flow axis direction, and the fluid viscosity on the velocity profiles obtained for different values of k factor is presented. For experiment in vivo on the carotid, we have used a data acquisition system with a sampling frequency of 20MHz and a dynamic range of 12bits. We have compared the axial velocity profiles in systole and diastole phase obtained for single channel RF sampling factor.ng factor.

  • PDF

Visualizing Live Chromatin Dynamics through CRISPR-Based Imaging Techniques

  • Chaudhary, Narendra;Im, Jae-Kyeong;Nho, Si-Hyeong;Kim, Hajin
    • Molecules and Cells
    • /
    • 제44권9호
    • /
    • pp.627-636
    • /
    • 2021
  • The three-dimensional organization of chromatin and its time-dependent changes greatly affect virtually every cellular function, especially DNA replication, genome maintenance, transcription regulation, and cell differentiation. Sequencing-based techniques such as ChIP-seq, ATAC-seq, and Hi-C provide abundant information on how genomic elements are coupled with regulatory proteins and functionally organized into hierarchical domains through their interactions. However, visualizing the time-dependent changes of such organization in individual cells remains challenging. Recent developments of CRISPR systems for site-specific fluorescent labeling of genomic loci have provided promising strategies for visualizing chromatin dynamics in live cells. However, there are several limiting factors, including background signals, off-target binding of CRISPR, and rapid photobleaching of the fluorophores, requiring a large number of target-bound CRISPR complexes to reliably distinguish the target-specific foci from the background. Various modifications have been engineered into the CRISPR system to enhance the signal-to-background ratio and signal longevity to detect target foci more reliably and efficiently, and to reduce the required target size. In this review, we comprehensively compare the performances of recently developed CRISPR designs for improved visualization of genomic loci in terms of the reliability of target detection, the ability to detect small repeat loci, and the allowed time of live tracking. Longer observation of genomic loci allows the detailed identification of the dynamic characteristics of chromatin. The diffusion properties of chromatin found in recent studies are reviewed, which provide suggestions for the underlying biological processes.