References
- Abdallah, B.M., and Kassem, M. (2008). Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 15, 109-116. https://doi.org/10.1038/sj.gt.3303067
- Alm, J.J., Heino, T.J., Hentunen, T.A., Vaananen, H.K., and Aro, H.T. (2012). Transient 100 nM dexamethasone treatment reduces interand intraindividual variations in osteoblastic differentiation of bone marrow-derived human mesenchymal stem cells. Tissue Eng. Part C Methods 18, 658-666. https://doi.org/10.1089/ten.tec.2011.0675
- Axelsson, A.S., Mahdi, T., Nenonen, H.A., Singh, T., Hanzelmann, S., Wendt, A., Bagge, A., Reinbothe, T.M., Millstein, J., Yang, X., et al. (2017). Sox5 regulates beta-cell phenotype and is reduced in type 2 diabetes. Nat. Commun. 8, 15652. https://doi.org/10.1038/ncomms15652
- Black, D.M., and Rosen, C.J. (2016). Clinical Practice. Postmenopausal Osteoporosis. N. Engl. J. Med. 374, 254-262. https://doi.org/10.1056/NEJMcp1513724
- Chen, H.F., Huang, C.H., Liu, C.J., Hung, J.J., Hsu, C.C., Teng, S.C., and Wu, K.J. (2014). Twist1 induces endothelial differentiation of tumour cells through the Jagged1-KLF4 axis. Nat. Commun. 5, 4697. https://doi.org/10.1038/ncomms5697
- Ding, D.C., Shyu, W.C., and Lin, S.Z. (2011). Mesenchymal stem cells. Cell Transplant 20, 5-14. https://doi.org/10.3727/096368910X
- Dy, P., Han, Y., and Lefebvre, V. (2008). Generation of mice harboring a Sox5 conditional null allele. Genesis 46, 294-299. https://doi.org/10.1002/dvg.20392
- Feng, X., Shi, Y., Xu, L., Peng, Q., Wang, F., Wang, X., Sun, W., Lu, Y., Tsao, B.P., Zhang, M., et al. (2016). Modulation of IL-6 induced RANKL expression in arthritic synovium by a transcription factor SOX5. Sci. Rep. 6, 32001. https://doi.org/10.1038/srep32001
- Kameda, Y., Takahata, M., Mikuni, S., Shimizu, T., Hamano, H., Angata, T., Hatakeyama, S., Kinjo, M., and Iwasaki, N. (2015). Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis. Bone 71, 217-226. https://doi.org/10.1016/j.bone.2014.10.027
- Kim, J.H., Kim, K., Youn, B.U., Lee, J., Kim, I., Shin, H.I., Akiyama, H., Choi, Y., and Kim, N. (2014). Kruppel-like factor 4 attenuates osteoblast formation, function, and cross talk with osteoclasts. J. Cell Biol. 204, 1063-1074. https://doi.org/10.1083/jcb.201308102
- Li, W., Liu, M., Su, Y., Zhou, X., Liu, Y., and Zhang, X. (2015). The Janus-faced roles of Kruppel-like factor 4 in oral squamous cell carcinoma cells. Oncotarget 6, 44480-44494.
- Lotters, F.J., van den Bergh, J.P., de Vries, F., and Rutten-van Molken, M.P. (2016). Current and Future Incidence and Costs of Osteoporosis-Related Fractures in The Netherlands: Combining Claims Data with BMD Measurements. Calcif. Tissue Int. 98, 235-243. https://doi.org/10.1007/s00223-015-0089-z
- Lv, H., Sun, Y., and Zhang, Y. (2015). MiR-133 is involved in estrogen deficiency-induced osteoporosis through modulating osteogenic differentiation of mesenchymal stem cells. Med. Sci. Monit. 21, 1527-1534. https://doi.org/10.12659/MSM.894323
- Mariner, P.D., Johannesen, E., and Anseth, K.S. (2012). Manipulation of miRNA activity accelerates osteogenic differentiation of hMSCs in engineered 3D scaffolds. J. Tissue Eng. Regen. Med. 6, 314-324. https://doi.org/10.1002/term.435
- Nosho, K., Yamamoto, H., Takahashi, T., Mikami, M., Taniguchi, H., Miyamoto, N., Adachi, Y., Arimura, Y., Itoh, F., Imai, K., et al. (2007). Genetic and epigenetic profiling in early colorectal tumors and prediction of invasive potential in pT1 (early invasive) colorectal cancers. Carcinogenesis 28, 1364-1370. https://doi.org/10.1093/carcin/bgl246
- Ohnishi, S., Ohnami, S., Laub, F., Aoki, K., Suzuki, K., Kanai, Y., Haga, K., Asaka, M., Ramirez, F., and Yoshida, T. (2003). Downregulation and growth inhibitory effect of epithelial-type Kruppel-like transcription factor KLF4, but not KLF5, in bladder cancer. Biochem. Biophys. Res. Commun. 308, 251-256. https://doi.org/10.1016/S0006-291X(03)01356-1
- Pacifici, R. (1996). Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J. Bone Miner Res. 11, 1043-1051.
- Pineda, B., Serna, E., Laguna-Fernandez, A., Noguera, I., Panach, L., Hermenegildo, C., Tarin, J.J., Cano, A., and Garcia-Perez, M.A. (2014). Gene expression profile induced by ovariectomy in bone marrow of mice: a functional approach to identify new candidate genes associated to osteoporosis risk in women. Bone 65, 33-41. https://doi.org/10.1016/j.bone.2014.05.001
- Raehtz, S., Bierhalter, H., Schoenherr, D., Parameswaran, N., and McCabe, L.R. (2017). Estrogen deficiency exacerbates type 1 diabetes-induced bone TNF-alpha expression and osteoporosis in female mice. Endocrinology 158, 2086-2101. https://doi.org/10.1210/en.2016-1821
- Rodriguez, J.P., Montecinos, L., Rios, S., Reyes, P., and Martinez, J. (2000). Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J. Cell Biochem. 79, 557-565. https://doi.org/10.1002/1097-4644(20001215)79:4<557::AID-JCB40>3.0.CO;2-H
- Sang, C., Zhang, Y., Chen, F., Huang, P., Qi, J., Wang, P., Zhou, Q., Kang, H., Cao, X., and Guo, L. (2016). Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/beta-catenin signaling in estrogen-deficiency induced osteoporosis. Bone 84, 78-87. https://doi.org/10.1016/j.bone.2015.12.012
- Sapir-Koren, R., and Livshits, G. (2017). Postmenopausal osteoporosis in rheumatoid arthritis: The estrogen deficiency-immune mechanisms link. Bone 103, 102-115. https://doi.org/10.1016/j.bone.2017.06.020
- Silva, I., and Branco, J.C. (2012). Denosumab: recent update in postmenopausal osteoporosis. Acta Reumatol. Port. 37, 302-313.
- Song, I., Choi, Y.J., Jin, Y., Kim, J.W., Koh, J.T., Ji, H.M., Jeong, S.Y., Won, Y.Y., Kim, W., and Chung, Y.S. (2017). STRA6 as a possible candidate gene for pathogenesis of osteoporosis from RNAseq analysis of human mesenchymal stem cells. Mol. Med. Rep. 16, 4075-4081. https://doi.org/10.3892/mmr.2017.7072
- Tai, S.K., Yang, M.H., Chang, S.Y., Chang, Y.C., Li, W.Y., Tsai, T.L., Wang, Y.F., Chu, P.Y., and Hsieh, S.L. (2011). Persistent Kruppel-like factor 4 expression predicts progression and poor prognosis of head and neck squamous cell carcinoma. Cancer Sci. 102, 895-902. https://doi.org/10.1111/j.1349-7006.2011.01859.x
- Tiwari, A., Loughner, C.L., Swamynathan, S., and Swamynathan, S.K. (2017). KLF4 plays an essential role in corneal epithelial homeostasis by promoting epithelial cell fate and suppressing epithelialmesenchymal transition. Invest Ophthalmol. Vis. Sci. 58, 2785-2795. https://doi.org/10.1167/iovs.17-21826
- Udalamaththa, V.L., Jayasinghe, C.D., and Udagama, P.V. (2016). Potential role of herbal remedies in stem cell therapy: proliferation and differentiation of human mesenchymal stromal cells. Stem Cell Res. Ther. 7, 110. https://doi.org/10.1186/s13287-016-0366-4
- Wang, J., and Zhao, Q. (2017). Expression of CCR3, SOX5 and LC3 in patients with elderly onset rheumatoid arthritis and the clinical significance. Exp. Ther. Med. 14, 3573-3576. https://doi.org/10.3892/etm.2017.4961
- Wang, D., Han, S., Wang, X., Peng, R., and Li, X. (2015). SOX5 promotes epithelial-mesenchymal transition and cell invasion via regulation of Twist1 in hepatocellular carcinoma. Med. Oncol. 32, 461.
- Wang, C., Meng, H., Wang, X., Zhao, C., Peng, J., and Wang, Y. (2016). Differentiation of bone marrow mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis. Med. Sci. Monit. 22, 226-233. https://doi.org/10.12659/MSM.897044
- Wegner, M. (1999). From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27, 1409-1420. https://doi.org/10.1093/nar/27.6.1409
- Wegner, M. (2010). All purpose Sox: The many roles of Sox proteins in gene expression. Int. J. Biochem. Cell Biol. 42, 381-390. https://doi.org/10.1016/j.biocel.2009.07.006
- Xu, X., Jia, X., Mo, L., Liu, C., Zheng, L., Yuan, Q., and Zhou, X. (2017). Intestinal microbiota: a potential target for the treatment of postmenopausal osteoporosis. Bone Res. 5, 17046. https://doi.org/10.1038/boneres.2017.46
- Yang, N., Wang, G., Hu, C., Shi, Y., Liao, L., Shi, S., Cai, Y., Cheng, S., Wang, X., Liu, Y., et al. (2013). Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J. Bone Miner Res. 28, 559-573. https://doi.org/10.1002/jbmr.1798
- Yao, W., Guan, M., Jia, J., Dai, W., Lay, Y.A., Amugongo, S., Liu, R., Olivos, D., Saunders, M., Lam, K.S., et al. (2013). Reversing bone loss by directing mesenchymal stem cells to bone. Stem Cells 31, 2003-2014. https://doi.org/10.1002/stem.1461
- Zhao, J.W., Gao, Z.L., Mei, H., Li, Y.L., and Wang, Y. (2011). Differentiation of human mesenchymal stem cells: the potential mechanism for estrogen-induced preferential osteoblast versus adipocyte differentiation. Am. J. Med. Sci. 341, 460-468. https://doi.org/10.1097/MAJ.0b013e31820865d5
Cited by
- Enhancement of MicroRNA-200c on Osteogenic Differentiation and Bone Regeneration by Targeting Sox2-Mediated Wnt Signaling and Klf4 vol.30, pp.11, 2018, https://doi.org/10.1089/hum.2019.019
- Restoration of primary cilia in obese adipose-derived mesenchymal stem cells by inhibiting Aurora A or extracellular signal-regulated kinase vol.10, pp.1, 2018, https://doi.org/10.1186/s13287-019-1373-z
- Shu-Di-Huang and Gan-Cao Herb Pair Restored the Differentiation Potentials of Mesenchymal Stem Progenitors in Treating Osteoporosis via Downregulation of NF-κB Signaling Pathway vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/7795527